Reducing A to MPCP

Let $A = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts } w \}.$

Let $MPCP = \{\langle P \rangle \mid P \text{ is an instance of the Post Correspondence Problem with a match that starts with the first domino }\}$.

We describe a function f that given $\langle M, w \rangle$, generates an instance P such that $\langle M, w \rangle \in A$ if and only if $P \in MPCP$.

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$. The function f constructs P as follows:

- 1. Put $\left[\frac{\#}{\#q_0w_1w_2\cdots w_n\#}\right]$ into P as first domino.
- 2. For every $a, b \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{reject}$: if $\delta(q, a) = (r, b, R)$ put $\left[\frac{qa}{br}\right]$ in P.
- 3. For every $a, b, c \in \Gamma$ and every $q, r \in Q$ where $q \neq q_{reject}$: if $\delta(q, a) = (r, b, L)$ put $\left[\frac{cqa}{rcb}\right]$ into P.
- For every a ∈ Γ: put [^a/_a] into P.
 Put [[#]/_#] and [[#]/_{-#}]into P.
- 6. For every $a \in \Gamma$: put $\left[\frac{aq_{accept}}{q_{accept}}\right]$ and $\left[\frac{q_{accept}a}{q_{accept}}\right]$ into P.

7. Add
$$\left[\frac{q_{accept} \# \#}{\#}\right]$$
 to P .