- Review of Exam 2
- L, NL, NL-Completeness (Sipser 8.4-8.5)

Some material from slides by M. Sipser
Announcements

- Exam 2 is graded.
 - Mean:
 - Median:
 - Std Dev:

- There will only be one more homework
 - Homework 5: Assigned 4/8/21, Due 4/23/31
 - Homework 6 is cancelled
Each student needs to give a 30 – 35 minute presentation
- Dates: April 26 and April 29
- If you cannot attend class live, contact me to discuss alternatives

Possible topics
- Hypercomputation – Infinite computation
 - Includes computation near a black hole
- Hypercomputation – Turing’s oracle machines
- Neural Turing Machines
- DNA Computing
- Analog Computing

Google doc in Submitty Course Materials with suggested references for each topic (will be posted after class today)
- Email me your top 3 choices (in order) and I will do my best to accommodate
- You can also select your own topic – just clear it with me in advance
Are there problems that can be solved in sublinear space, \(f(n) < n \) ?

To study sublinear space algorithms, we need a different model.
- Two-tape TM with read-only input tape and read/write work tape.

read-only input tape does not count towards space used

count cells used here

read/write work tape
Log Space Complexity

- We focus on algorithms with space complexity in $O(\log n)$

- L is the class of languages that are decidable in logarithmic space on a deterministic TM:
 \[L = SPACE(\log n) \]

- N is the class of languages that are decidable in logarithmic space on a nondeterministic TM:
 \[NL = NSPACE(\log n) \]
Example in Class L

- \(A = \{0^k1^k \mid k \geq 0 \} \)

- D: on input \(0^k1^k \):
 - Count number of 0’s and 1’s using two binary counters on work tape
 - Compare counters, if equal, accept. If not, reject.
 - (Implicit: If a 0 appears after a 1, reject)
A = language of properly nested parenthesis. Show that A is in L
The PATH Problem - Revisited

- \(\text{PATH} = \{ \langle G, s, t \rangle | G \text{ is a directed graph that has a directed path from } s \text{ to } t \} \)

- We showed that PATH is in P

- M: On input \(\langle G, s, t \rangle \) where \(G \) is a directed graph with nodes \(s \) and \(t \)
 - 1. Mark node \(s \).
 - 2. Repeat the following until no additional nodes are marked.
 - 3. Scan all edges of \(G \). If an edge \((a, b) \) is found going from a marked node \(a \) to an unmarked node \(b \), mark node \(b \).
 - 4. If \(t \) is marked, accept. Otherwise, reject.
\[\text{PATH} = \{ (G, s, t) \mid G \text{ is a directed graph that has a directed path from } s \text{ to } t \} \]

Show \(\text{PATH} \) is in NL.
Relationship to Other Complexity Classes

- **Theorem:** $NL \subseteq P$

- **Theorem:** $NL \subseteq \text{SPACE}(\log^2 n)$
NL-Completeness

- PATH problem is in NL. We do not think it is in L.
 - We don’t know whether L = NL.

- We define a language B to be **NL-complete** if
 1. B is in NL
 2. All other languages in NL are reducible to B in log space.
A **log space transducer** is a TM with 3 tapes:

1. A read-only input tape
2. A write-only output tape
3. A read/write work tape of size $O(\log n)$

A log space transducer T computes a function $f : \Sigma^* \rightarrow \Sigma^*$ if T on input w halts with $f(w)$ on its output tape, for all w.

Call f a **log space computable function**.

Language A is **log space reducible** to language B if A is mapping reducible to B using a log space computable function f.

Written: $A \leq_L B$
Theorem: If $A \leq_L B$ and $B \in L$ then $A \in L$.
A language B is **NL-complete** if
1. B is in NL
2. For all $A \in NL$, $A \leq_L B$.

Theorem: If any NL-complete language is in L, then $L = NL$.
Theorem: PATH is NL-Complete