- Intractability and the Hierarchy Theorems – Sipser 9.1

Some material from slides by M. Sipser
Announcements

- Homework 5 is posted in Submitty Course Materials.
 - It is due on April 23, 2021 in Gradescope.
What we’ve learned so far:

\[L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME \]

We do not know whether any of these subset relations (\(\subseteq\)) are strict (\(\subset\)).

Intuitively, giving a TM more time or space should increase the class of problems it can solve.

The hierarchy theorems prove this intuition is correct

- The theorems don’t tell us specifically whether \(P \subseteq NP\), for example, but they do give us more information about the relationship between complexity classes.
Review – Asymptotic Notation

- **Big-O Notation**
 - Let f and g be functions, $f, g: \mathbb{N} \to \mathbb{R}^+$.
 - We say $f(n) = O(g(n))$ if there exists positive integers c and n_0 such that every integer $n \geq n_0$, $f(n) \leq c \cdot g(n)$.
 - $g(n)$ is an **asymptotic upper bound** for $f(n)$.

- **Little-o Notation**
 - Let f and g be functions, $f, g: \mathbb{N} \to \mathbb{R}^+$.
 - We say $f(n) = o(g(n))$ if for every $c > 0$ there exists an n_0 such that $f(n) < c \cdot g(n)$ for every integer $n \geq n_0$.

- The difference between big-O and little-o is analogous to the difference between \leq and $<$.

Space Hierarchy Theorem

- **Theorem:** For any computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ (that satisfies certain technical properties), there exists a language A that is decidable in $O(f(n))$ space but not in $o(f(n))$ space.
D: on input w:

1. Let $n = |w|$.
2. Compute $f(n)$ and mark off this much tape.
 If later stages use more than $f(n)$ tape, reject.
3. If w is not of form $<M>10^*$ for some TM M, reject.
4. Simulate M on w while counting the number of steps used.
 If count exceeds $2^{f(n)}$, reject.
5. If M accepts, reject. If M rejects, accept.
D: on input w:

1. Let $n = |w|$.
2. Compute $f(n)$ and mark off this much tape.
 If later stages use more than $f(n)$ tape, reject.
3. If w is not of form $< M > 10^*$ for some TM M, reject.
4. Simulation M on w while counting the number of steps used.
 If count exceeds $2^{f(n)}$, reject.
5. If M accepts, reject. If M rejects, accept.
Space Constructable Function

- **Theorem:** For any computable function $f: \mathbb{N} \to \mathbb{N}$ (that satisfies certain technical properties), there exists a language A that is decidable in $O(f(n))$ space but not in $o(f(n))$ space.

- A function $f: \mathbb{N} \to \mathbb{N}$ where $f(n)$ is at least $O(\log n)$ is **space constructable** if the function $h(1^n) = f(n)$ (in binary) is computable in space $O(f(n))$.

- **Theorem:** For any space constructable function $f: \mathbb{N} \to \mathbb{N}$, there exists a language A that is decidable in $O(f(n))$ space but not in $o(f(n))$ space.
Implications of the Space Hierarchy Theorem

- **Theorem:** For any space constructable function \(f : \mathbb{N} \rightarrow \mathbb{N} \), there exists a language \(A \) that is decidable in \(O(f(n)) \) space but not in \(o(f(n)) \) space.

- **Corollary:** \(NL \subseteq PSPACE \)

- **Corollary:** \(PSPACE \subseteq EXPSPACE \)
The Time Hierarchy Theorem

- **Theorem:** For any $f: \mathbb{N} \to \mathbb{N}$ where f is time constructible there is a language A where

 1) A is decidable in $O(f(n))$ time, and

 2) A is not decidable in $o\left(\frac{f(n)}{\log(f(n))}\right)$ time.
D: on input w:
1. Let $n = |w|$
2. Compute $f(n)$ and store value in a binary counter.
 Decrement counter before each step in stages 4 and 5. If counter hits 0, reject.
3. If w is not of form $\langle M \rangle 01^*$ for some TM M, reject.
4. Simulate M on w.
5. If M accepts, then reject. If M rejects, then accept.
D: on input w:

1. Let $n = |w|$
2. Compute $f(n)$ and store value in a binary counter. Decrement counter before each step in stages 4 and 5. If counter hits 0, reject.
3. If w is not of form $⟨M⟩01^∗$ for some TM M, reject.
4. Simulate M on w.
5. If M accepts, then reject. If M rejects, then accept.
Implications of the Time Hierarchy Theorem

- **Time Hierarchy Theorem**: For any $f: \mathbb{N} \rightarrow \mathbb{N}$ where f is time constructible there is a language A where
 1) A is decidable in $O(f(n))$ time, and
 2) A is not decidable in $o(f(n) / \log(f(n)))$ time

- **Corollary**: $P \subset \text{EXPTIME}$
Example

- Prove that $NTIME(n) \subseteq PSPACE$.