Theory of Computation – Lecture 9

MARCH 1, 2021

- Undecidability (Section 4.2)
- Undecidable Problems from Language Theory (Section 5.1)
- Mapping Reducibility (Section 5.3)
Announcements

- Exam 1 is graded.
- Grades will be released after class. The curve will be described in the email from Gradescope.
- Regrades/grade questions can be submitted via Gradescope or in office hours for one week.
Quick Recap

- Last lecture, we studied decidability.
- We proved that several problems are decidable by creating a TM decider for the language of the problem.
 - Does a given DFA accept an input string \(w \)?
 - Does a given NFA accept an input string \(w \)?
 - Is the language of a given DFA empty?
 - Do two DFAs recognize the same language?
 - Is the language of a given CFG empty?
- Then, we moved on to showing that some problems are undecidable.
 - There are languages that are not decided by any Turing Machine – still TODO.
Quick Recap

- **Theorem:** If \(S \) is an infinite countable set, then the power set of \(S \) is uncountable.

- Let \(\Sigma \) be an alphabet. The set of all strings over \(S = \Sigma^* \) is infinite and countable.
 - The set of all strings over an alphabet is infinite and countable.
 - A language is a subset of \(\Sigma^* \).

- The power set of \(S \) is the set of all languages over \(\Sigma \).
 - **Corollary:** The set of all languages is uncountable.

- **Theorem:** Some languages are not Turing-recognizable.
 1. The set of Turing Machines is countable – it is a subset of a set of all strings.
 2. The set of languages is uncountable – it is the power set of a set of all strings.

Thus – there are more languages than Turing Machines.
Does a given Turing Machine \(M \) accept an input string \(w \)?

\[A = \{ \langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts } w \} \]

Theorem: \(A \) is Turing-recognizable.

Proof: Construct a TM \(U \) that recognizes \(A \)

\(U \): on input \(\langle M, w \rangle \) where \(M \) is a TM and \(w \) is a string

1. Simulate \(M \) on input \(w \).
2. If \(M \) enters accept state: output accept
 If \(M \) enters reject state: output reject
Does a given Turing Machine M accept an input string w? $A = \{ (M, w) \mid M$ is a Turing machine and M accepts $w \}$

Theorem: A is undecidable.
Does a given Turing Machine M accept an input string w?

$A = \{\langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts } w\}$

Theorem: A is undecidable.
Co-Turing Recognizability

- A language B is **co-Turing-recognizable** if it is the complement of a Turing-recognizable language.

- **Theorem**: A language is decidable if and only if it is Turing-recognizable and co-Turing-Recognizable.
A language B is **co-Turing-recognizable** if it is the complement of a Turing-recognizable language.

Theorem: A language is decidable if and only if it is Turing-recognizable and co-Turing-Recognizable.
A Turing-Unrecognizable language

- Recall $A = \{\langle M, w \rangle | M$ is a Turing machine and M accepts $w\}$
- **Theorem:** \overline{A} is not Turing-recognizable.
Reducibility

CHAPTER 5
For two languages (problems) A and B, A is reducible to B if we can use a solution to B to solve A.

A: measure area of a rectangle B: measure length of its sides

A: decide whether an NFA accepts a string w B: decide whether a DFA accepts a string w
The Halting Problem

- Does a TM M halt on input w?
- **Theorem:** $B = \{ (M, w) \mid M \text{ is a TM and } M \text{ halts on input } w \}$ is undecidable.
\[A = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \]
\[B = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \]
The Empty Language Problem for Turing Machines

- \(E = \{(M, w) \mid M \text{ is a TM and } L(M) = \emptyset\} \)
- **Theorem**: \(E \) is undecidable.
\[A = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \]

\[E = \{ \langle M, \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]
A function $f: \Sigma^* \rightarrow \Sigma^*$ is a **computable function** if some Turing machine M, on every input w, halts with just $f(w)$ on its tape.

Language A is **mapping reducible** to language B ($A \leq_m B$) if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$ (the **mapping reduction**) where $w \in A$ if and only if $f(w) \in B$.

Mapping Reducibility