- Measuring Complexity (Section 7.1)
- The Class P (Section 7.2)
- The Class NP (Section 7.3)
- Polynomial Time Reducibility (Section 7.4)

Some material from slides by M. Sipser
Announcements

- Homework 3 due Wednesday March 17, 2021 at 11:59pm (NY Time)
Time Complexity

- How many steps are needed to decide a language A?
 - A function of the input
 - We give an upper bound for all inputs of lengths n.
 - Called **worst-case time complexity**.
Number of steps to decide \(A = \{ a^k b^k \mid k \geq 0 \} \)

- \(M = \) On input \(w \)
 1. Scan input to check if \(w \in a^*b^* \). If not, reject.
 2. Repeat until all crossed off.
 - Scan tape, crossing off one \(a \) and one \(b \).
 - Reject if only \(a \)'s or only \(b \)'s remain.
 3. Accept if all crossed off.

- **Theorem:** A single tape TM can decide \(A \) in at most \(cn^2 \) steps for some fixed constant \(c \).
Deciding $A = \{ a^k b^k \mid k \geq 0 \}$ faster

- **Theorem:** A single tape TM can decide A using $O(n \log n)$ steps.
Deciding $A = \{ a^k b^k \mid k \geq 0 \}$ even faster

- **Theorem:** A multi-tape TM can decide A using $O(n)$ steps.
Model Dependence

- Number of steps to decide $A = \{a^kB^k \mid k \geq 0\}$ depends on the model.
 - Single tape TM: $O(n \log n)$
 - Multi-tape TM: $O(n)$

- Computability theory: model independent
- Complexity theory: model dependent
 - For “reasonable” deterministic models, dependence is low (polynomial).
 - So, we will focus on single tape (deterministic) TM as basic model for complexity.
Time Complexity Classes

- A TM runs in time $t(n)$ if M always halts within $t(n)$ steps on all inputs of length n.
- $\text{TIME}(t(n)) = \{ B \mid \text{some deterministic single-tape TM decides } B \text{ in time } O(t(n)) \}$
Theorem: Every $t(n)$ time multitape TM has an equivalent $O(t^2(n))$ time single-tape TM.
Relationship Among Models

- Informal Definition: Two models of computation are **polynomially equivalent** if each can simulate the other with a polynomial overhead:

 So $t(n)$ time $\rightarrow t^k(n)$ time on the other model, for some k.

- All reasonable deterministic models are polynomially equivalent.
 - Single tape TMs
 - Multi-tape TMs
 - Multi-dimensional TMs
 - Cellular automata
The Class P

- P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine

\[P = \bigcup_k \text{TIME}(n^k) \]

- P is invariant for all models of computation that are polynomially equivalent.

- “P roughly corresponds to the class of problems that are realistically solvable on a computer.”
The PATH Problem

- \(PATH=\{(G,s,t) \mid G \text{ is a directed graph with a path from } s \text{ to } t \} \)
- Is there a path from \(s \) to \(t \) in \(G \)?
$PATH \in P$

- $PATH=\{\langle G, s, t \rangle \mid G \text{ is a directed graph with a path from } s \text{ to } t \}$
The HAMPATH Problem

- $HAMPATH = \{(G, s, t) \mid G$ is a directed graph with a path from s to t
 and the path goes through every node of G $\}$
A Nondeterministic Algorithm for HAMPATH
Nondeterministic Complexity

- In a nondeterministic TM that is a decider, all computation paths halt on all inputs.
- \(\text{NTIME}(t(n)) = \{B \mid \text{some single-tape nondeterministic TM decides } B \text{ and runs in time } O(t(n)) \} \)

\[
NP = \bigcup_k \text{NTIME} \left(n^k \right)
\]

- NP is invariant for all reasonable nondeterministic models.
The COMPOSITES Problem

- \(\text{COMPOSITES} = \{ x | x = pq \text{ for integers } p, q > 1 \} \) \(\text{COMPOSITES} \in NP \)
For the algorithms for HAMPATH and COMPOSITES, there were exponentially many computation paths.

- For each path, the TM guesses a solution and checks (verifies) whether the solution is valid.

A **verifier** for a language A is an algorithm V where $A = \{ w \mid V \text{ accepts } <w,c> \text{ for some string } c \}$

- A verifier uses the extra information in c to check that w is a member of A.
- c is called the **certificate** or the **proof**.

A **polynomial time verifier** runs in time polynomial in the length of w.

A language A is **polynomially verifiable** if it has a polynomial time verifier.
Definition: NP is the class of languages that have polynomial time verifiers.

Theorem: A language has a polynomial time verifier if and only if it is decided by some nondeterministic polynomial time Turing machine.
Theorem: A language has a polynomial time verifier if and only if it is decided by some nondeterministic polynomial time Turing machine.
A Boolean formula ϕ has Boolean variables (True/False values) and the Boolean operations And (\land), Or (\lor), and Not (\neg).

ϕ is **satisfiable** if ϕ evaluates to TRUE for some assignment to its variables.

$SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Cook-Levin Theorem: $SAT \in P$ if and only if $P = NP$
Polynomial Time Reducibility

- A function $f : \Sigma^* \to \Sigma^*$ is a polynomial time computable function if there exists a polynomial time Turing machine M that, on every input w, halts with just $f(w)$.

- Language A is polynomial time mapping reducible (also called polynomially time reducible) to language B (written $A \leq_p B$) if there is a polynomial time computable function f where $w \in A$ if and only if $f(w) \in B$.

 The function f is called a polynomial time reduction of A to B.
Proving Problems are in P

- **Theorem:** If \(A \leq_P B \) and \(B \in P \) then \(A \in P \)