Theory of Computation – Lecture 13

MARCH 1, 2021

- The Class NP (Section 7.3)
- NP Completeness (Section 7.4)

Some material from slides by M. Sipser
Announcements

- Homework 3 due Wednesday March 17, 2021 at 11:59pm (NY Time)
A TM runs in time $t(n)$ if M always halts within $t(n)$ steps on all inputs of length n.

$\text{TIME}(t(n)) = \{ B \mid \text{some deterministic single-tape TM decides } B \text{ in time } O(t(n)) \}$
- E.g., $\text{TIME}(n^2)$ is the set of all languages that can be decided by a deterministic single-tape Turing machine in $O(n^2)$.

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine,

$$P = \bigcup_k \text{TIME}(n^k)$$

P is invariant for all reasonable deterministic models of computation.
- If language B is decidable on a deterministic multi-tape TM in n steps, then B is decidable on a deterministic single-tape TM in $O(n^2)$.
How to prove a problem is in P?

- The Path problem is in P
 - \(\text{PATH} = \{(G,s,t) \mid G \text{ is a directed graph with a path from } s \text{ to } t \} \)
 - We proved this by constructing a deterministic single tape TM that decides \(\text{PATH} \) in polynomial time

- Be careful with selection of the input encoding
 - Make sure the length of the encoding is polynomial in the “size” of the input data structure

- We can also prove a problem is in P by reducing it (in polynomial time) to a problem that we already know is in P
 - More on this later
In a nondeterministic TM that is a decider, all computation paths halt on all inputs.

\[\text{NTIME}(t(n)) = \{ B \mid \text{some nondeterministic single tape TM decides } B \text{ and runs in time } O(t(n)) \} \]

NP is the class of languages that are decidable in polynomial time on a nondeterministic single tape Turing machine

\[NP = \bigcup_{k} \text{NTIME}(n^{k}) \]

NP is invariant for all reasonable nondeterministic models.
How to Prove a Problem is in NP

- The HAMPATH problem is in NP
 - \(\text{HAMPATH} = \{(G,s,t) \mid G \text{ is a directed graph with a path from } s \text{ to } t \text{ and the path goes through every node of } G \} \)
 - We proved this problem is in NP by constructing a nondeterministic single tape TM that decides \(\text{HAMPATH} \) in polynomial time
 - Idea: nondeterministically select a permutation of the \(n \) vertices and check whether it is a Hamiltonion path
 - The TM accepts if at least one computation accepts

- We used a similar approach to prove that \(\text{COMPOSITES} \) is in NP

- One important takeaway - for these problems, there are exponentially many possibly computation branches
 - Not trivial to convert nondeterministic solution to run on a deterministic TM in polynomial time
 - This does not mean the problems are not in \(P \), just that we cannot use the general procedure for constructing an equivalent deterministic TM to prove they are in \(P \)
How to Prove a Problem is in NP?

- Another key takeaway: for the proof, each computation path in the nondeterministic TM must terminate in a polynomial number of steps.
 - Thus, the entire TM has polynomial running time.

- We can consider each computation path as a processing a candidate solution \(c\) to the problem
 - A single computation path in the TM verifies whether \(c\) is a solution in polynomial time

- We can construct a deterministic single tape TM that performs an equivalent verification for such a candidate \(c\)
 - This TM is called a verifier
A **verifier** for a language A is an algorithm (TM) V where $A = \{ w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$

- A verifier uses the extra information in c to check that w is a member of A.
- c is called the **certificate** or the **proof**.

A **polynomial time verifier** runs in time polynomial in the length of w.

A language A is **polynomially verifiable** if it has a polynomial time verifier.
NP and Polynomial Time Verifiers

- Definition 1: NP is the class of languages that are decidable by a nondeterministic single tape TM in polynomial time.

- Definition 2: NP is the class of languages that have polynomial time verifiers.

These definitions are not two separate criteria for the class NP. They are equivalent.

- **Theorem:** A language has a polynomial time verifier if and only if it is decided by some nondeterministic polynomial time TM.
Theorem: A language has a polynomial time verifier if and only if it is decided by some nondeterministic polynomial time Turing machine.
Theorem: A language has a polynomial time verifier if and only if it is decided by some nondeterministic polynomial time Turing machine.
The Clique Problem

- A **clique** is a subgraph of an undirected graph in which every pair of nodes is connected by an edge.
- A k-clique is a clique that contains k nodes.

- The **clique problem** is to determine whether a graph contains a clique of a specified size.
 - $CLIQUE = \{ \langle G, k \rangle | G$ is an undirected graph with a k-clique $\}$
- $\text{CLIQUE} = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with a } k\text{-clique} \}$
- **Theorem:** $\text{CLIQUE} \in \text{NP}$
P vs NP

- NP = class of languages that are solvable in polynomial time on a nondeterministic TM
 = class of languages that can be verified in polynomial time (on a deterministic TM)
 = class of languages for which membership can be verified quickly

- P = class of languages that are solvable in polynomial time on a deterministic TM
 = class of languages for which membership can be decided quickly

- As of yet, we are unable to prove the existence of a single language in NP that is not in P

- What we do know: $NP \subseteq EXPTIME = \bigcup_k TIME(2^{n^k})$
NP Completeness

SIPSER 7.4
In the early 1970s, Stephen Cook and Leonid Levin discovered certain problems in NP such that, if a polynomial time algorithm exists for any of these problems, then $P = NP$

- These problems are called **NP-complete** problems.

If a researcher wants to show that $P \neq NP$, then they may focus on a single NP-complete problem.

If one believes $P \neq NP$, and they prove a problem is NP-complete, they may not want to waste time looking for a polynomial time algorithm for it.
The Satisfiability Problem

- A **Boolean formula** ϕ has Boolean variables (True/False values) and the Boolean operations: And (\land), Or (\lor), and Not (\lnot).

- ϕ is **satisfiable** if ϕ evaluates to TRUE for some assignment to its variables.

$$SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$$

Theorem: $SAT \in P$ if and only if $P = \text{NP}$
- SAT is NP-complete
Polynomial Time Reducibility

- A function $f: \Sigma^* \rightarrow \Sigma^*$ is a **polynomial time computable function** there exists a polynomial time Turing machine M that, on every input w, halts with just $f(w)$.

- Language A is **polynomial time mapping reducible** (also called **polynomially time reducible**) to language B (written $A \leq_P B$) if there is a polynomial time computable function f where $w \in A$ if and only if $f(w) \in B$.

 The function f is called a **polynomial time reduction** of A to B.
Theorem: If $A \leq_B B$ and $B \in P$ then $A \in P$
Example Polynomial Time Reduction

- A Boolean formula ϕ is in **Conjunctive Normal Form** (CNF) if it has the form
 $$\phi = (x \lor \bar{y} \lor z) \land (\bar{x} \lor \bar{s} \lor z \lor u) \land \cdots \land (\bar{z} \lor \bar{u})$$

- A **3cnf-formula** is a cnf-formula where all clauses have exactly three literals.

- $3SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3cnf-formula} \}$

- We will show $3SAT$ is polynomial time reducible to $CLIQUE$

 $$CLIQUE = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with a } k\text{-clique} \}$$
$3SAT = \{(\phi) | \phi \text{ is a satisfiable 3cnf-formula}\}$

$\text{CLIQUE} = \{(G, k) | G \text{ is an undirected graph with a } k\text{-clique}\}$

Theorem: $3SAT$ is polynomial time reducible to CLIQUE

$$(x_1 \lor x_1 \lor x_2) \land (x_1 \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$$
3SAT = \{ (\phi) | \phi \text{ is a satisfiable 3cnf-formula} \} \quad CLIQUE = \{ (G, k) | G \text{ is an undirected graph with a } k\text{-clique} \} \\

Theorem: 3SAT is polynomial time reducible to CLIQUE \\

\[(x_1 \lor x_1 \lor x_2) \land (x_1 \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)\]
A language B is **NP-complete** if it satisfies two conditions:

1. B is in NP and
2. Every A in NP is polynomial time reducible to B

Theorem: If B is NP-complete and B is in P, then $P = NP$

Proof follows directly from theorem: If $A \leq_P B$ and $B \in P$ then $A \in P$

Theorem: If B is NP-complete and $B \leq_P C$ for C in NP, then C is NP-complete.
The Cook-Levin Theorem

- $SAT = \{\langle \phi \rangle | \phi$ is a satisfiable Boolean formula}\}

- **Theorem:** SAT is NP-complete

- Will prove this in the next lecture.
 - For now, just assume it is true.

- We can show a problem C is NP-complete by showing $SAT \leq_P C$
$3SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula} \}$ \hspace{1cm} $SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

Theorem: $3SAT$ is NP-complete.