- NP Completeness (Section 7.4)

Some material from slides by M. Sipser
Announcements

- Homework 4 assigned today
 - due Wednesday March 24, 2021 at 11:59pm (NY Time)
 - Only 3 problems (a half homework)

- Exam 2 is Monday, March 29, 2021
A function \(f: \Sigma^* \rightarrow \Sigma^* \) is a polynomial time computable function if there exists a polynomial time Turing machine \(M \) that, on every input \(w \), halts with just \(f(w) \).

Language \(A \) is polynomial time mapping reducible (also called polynomially time reducible) to language \(B \) (written \(A \leq_p B \)) if there is a polynomial time computable function \(f \) where \(w \in A \) if and only if \(f(w) \in B \).

The function \(f \) is called a polynomial time reduction of \(A \) to \(B \).

Theorem: If \(A \leq_p B \) and \(B \in \mathbb{P} \) then \(A \in \mathbb{P} \)
A language \(B \) is **NP-complete** if it satisfies two conditions:

1. \(B \) is in NP and
2. Every \(A \) in NP is polynomial time reducible to \(B \)

If we can prove that any NP-complete problem has a polynomial time solution, then we have proved that \(P = NP \).

Theorem: If \(A \leq_p B \) and \(B \in P \) then \(A \in P \)
A **Boolean formula** ϕ has Boolean variables (True/False values) and the Boolean operations: And (\land), Or (\lor), and Not (\neg).

ϕ is **satisfiable** if ϕ evaluates to TRUE for some assignment to its variables.

$SAT = \{\langle \phi \rangle | \phi$ is a satisfiable Boolean formula$\}$

The Cook-Levin Theorem: SAT is NP-complete.

- $SAT \in P \iff P = NP$
Theorem: SAT is NP-complete

1. SAT is in NP
2. Every A in NP is polynomial time reducible to SAT

Proof of part 1:
Theorem: SAT is NP-complete

1. SAT is in NP
2. Every A in NP is polynomial time reducible to SAT

Proof outline for part 2:
A **tableau** for M on w is an $n^k \times n^k$ table, represents one computation path in M on input w.

- Each row is a configuration: shows current state, current tape contents, current head location.
- A tableau is **accepting** if any row of the tableau is an accepting configuration.
Now we describe the function f that constructs $\phi_{M,w}$

Define $C = Q \cup \Gamma \cup \{\#\}$

- Each cell in a tableau takes a value from C

Define variables of $\phi_{M,w}$ as $x_{i,j,s}$

- $x_{i,j,s} = 1$ means cell (i,j) takes the value $s \in C$

$\phi_{M,w}$ consists of 4 parts:

$$\phi_{M,w} = \phi_{cell} \land \phi_{start} \land \phi_{move} \land \phi_{accept}$$
\[
\phi_{\text{cell}} = \bigwedge_{1 \leq i, j \leq n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \wedge \left(\bigwedge_{s,t \in C} \left(\overline{x_{i,j,s}} \vee \overline{x_{i,j,t}} \right) \right) \right].
\]
\[\phi_{\text{start}} = x_{1,1}, \# \land x_{1,2}, q_0 \land \\
x_{1,3}, w_1 \land x_{1,4}, w_2 \land \ldots \land x_{1,n+2}, w_n \land \\
x_{1,n+3}, \sqcup \land \ldots \land x_{1,n^k-1}, \sqcup \land x_{1,n^k}, \# \]

\[\phi_{\text{accept}} = \bigvee_{1 \leq i, j \leq n^k} x_{i,j}, q_{\text{accept}} \]
\[\phi_{M,w} = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{move}} \land \phi_{\text{accept}} \]

Legal windows: consistent with M’s transition function

Illegal windows: not consistent with M’s transition function
\[\phi_{\text{move}} = \bigwedge_{1<i \leq n^k, 1<j<n^k} (\text{the } (i,j) \text{ window is legal}) \]

“the \((i,j)\) window is legal” is formalized as:

\[\bigvee_{a_1, \ldots, a_6} \left(x_{i,j-1,a_1} \land x_{i,j,a_2} \land x_{i,j+1,a_3} \land x_{i+1,j-1,a_4} \land x_{i+1,j,a_5} \land x_{i+1,j+1,a_6} \right) \]

is a legal window
We have given a reduction f that computes $\phi_{M,w}$ such that $\phi_{M,w}$ has a satisfying assignment if and only if M accepts w

$$\phi_{M,w} = \phi_{cell} \land \phi_{start} \land \phi_{move} \land \phi_{accept}$$

- Is f a polynomial time reduction?
 - How many variables in $\phi_{M,w}$?
 - How long is $\phi_{M,w}$?
A language B is **NP-complete** if it satisfies two conditions:

1. B is in NP and
2. Every A in NP is polynomial time reducible to B

Theorem: If B is NP-complete and $B \leq_p C$ for C in NP, then C is NP-complete.
A Boolean formula ϕ is in **Conjunctive Normal Form** (CNF) if it has the form

$\phi = (x \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{s} \lor z \lor u) \land \cdots \land (\overline{z} \lor \overline{u})$

A **3cnf-formula** is a cnf-formula where all clauses have exactly three literals.

$3SAT = \{ \langle \phi \rangle | \phi \text{ is a satisfiable 3cnf-formula}\}$

Theorem: $3SAT$ is NP-complete.
3SAT = \{⟨φ⟩| φ is a satisfiable 3cnf-formula\} \quad \quad SAT = \{⟨φ⟩| φ is a satisfiable Boolean formula\}

Theorem: 3SAT is NP-complete.