Theory of Computation – Lecture 11
MARCH 8, 2021

- Rice’s Theorem
- The Recursion Theorem (Section 6.1)
- Measuring Complexity (Section 7.1)

Some material from slides by M. Sipser
Homework 3 assigned today.
- It is due Wednesday March 17, 2021 at 11:59pm (NY Time)
Review of Mapping Reducibility

- Define: $E_{TM} = \{ <M> | M \text{ is a TM and } L(M) = \emptyset \}$.
 - We showed E_{TM} is undecidable.
- Define $EQ_{TM} = \{ <M_1, M_2> | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$
 - Prove EQ is undecidable by showing $E_{TM} \leq_m EQ_{TM}$.
Rice's Theorem

- We have shown several undecidability results about languages.
 - $A = \{\langle M, w \rangle \mid M \text{ is a Turing machine and } M \text{ accepts } w \}$ is undecidable.
 - $H = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$ is undecidable.
 - $E_{\text{TM}} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$ is undecidable.
 - $E_{\text{EQ}_{\text{TM}}} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_1 \text{ are TMs and } L(M_1) = L(M_2) \}$ is undecidable.

- Rice's Theorem says that any non-trivial property of the language recognized by a TM is undecidable.
 - A set P of languages is a non-trivial property of Turing-recognizable languages such that there is some TM M such that $L(M) \in P$, and there is some TM N such that $L(N) \notin P$.

- P is a property of the TM’s language.
 - If 2 TMs have the same language, either both are in P or both are not in P.
Rice’s Theorem: Let P be a nontrivial property. Then $M_P = \{ \langle M \rangle \mid L(M) \in P \}$ is undecidable.
Application of Rice’s Theorem

- $P = \text{languages that contain the string 01}$
- $M_P = \{\langle M \rangle \mid 01 \in L(M)\}$
The Recursion Theorem

SECTION 6.1
Recursive Programs

M: On input w

 If $w = \lambda$ then output 0

 Else

 Obtain $\langle M \rangle$

 Run M on $\text{tail}(w)$

 If M outputs a number n then output $n+1$
The Recursion Theorem

- **Recursion theorem:** Let T be a Turing Machine that computes a function $t : \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$. There is a Turing Machine R that computes a function $r : \Sigma^* \rightarrow \Sigma^*$, where for every w, $r(w) = t(<R>, w)$.
Proof of Recursion Theorem

- **Lemma**: There is a computable function $q: \Sigma^* \to \Sigma^*$, where if w is any string, $q(w)$ is the description of a TM that prints out w and then halts.
Recursion theorem: Let T be a Turing Machine that computes a function $t: \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$. There is a Turing Machine R that computes a function $r: \Sigma^* \rightarrow \Sigma^*$, where for every w, $r(w) = t(\langle R \rangle, w)$.
Application of Recursion Theorem (1)

- Prove $A = \{ \langle M, w \rangle \mid M$ is a TM and M accepts w} is undecidable.
A TM is **minimal** if there is no equivalent TM with a shorter description.

\[\text{MIN}_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a minimal TM} \} \]

Theorem: \(\text{MIN}_{\text{TM}} \) is not Turing-recognizable.
Time Complexity – Chapter 7
Intro to Time Complexity

- So far, we have focused on computability theory (1930s – 1950s)
 - Is language A decidable?
- Complexity theory (1960s – present)
 - Is language A decidable with restricted resources?
 - Resources = time, memory, ...
- We will start our study of complexity theory with time complexity
 - How many steps are needed to decide a language A?
 - A function of the input
 - We give an upper bound for all inputs of lengths n.
 - Called worst-case time complexity.
Number of steps to decide $A = \{ a^kb^k \mid k \geq 0 \}$

- $M =$ On input w
 1. Scan input to check if $w \in a^*b^*$. If not, reject.
 2. Repeat until all crossed off.
 - Scan tape, crossing off one a and one b.
 - Reject if only a’s or only b’s remain.
 3. Accept if all crossed off.
Deciding $A = \{ a^k b^k \mid k \geq 0 \}$ faster

- **Theorem**: A 1-tape TM can decide A using $O(n \log n)$ steps.
Deciding $A = \{ a^k b^k \mid k \geq 0 \}$ even faster

- **Theorem:** A multi-tape TM can decide A using $O(n)$ steps.
Model Dependence

- Number of steps to decide $A = \{a^k b^k \mid k \geq 0\}$ depends on the model.
 - Single tape TM: $O(n \log n)$
 - Multi-tape TM: $O(n)$

- Computability theory: model independent
- Complexity theory: model dependent
 - For “reasonable” deterministic models, dependence is low (polynomial).
 - So, we will focus on single tape TM as basic model for complexity.