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Abstract—Modeling trust in very large social networks is a
hard problem due to the highly noisy nature of these networks
that span trust relationships from many different contexts, based
on judgments of reliability, dependability and competence and
the relationships vary in their level of strength. In this paper,
we introduce a new extended balance theory as a foundational
theory of trust in networks. Our theory preserves the distinctions
between trust and distrust as suggested in the literature, but
also incorporates the notion of relationship strength which can
be expressed as either discrete categorical values, as pairwise
comparisons or as metric distances. Our model is novel, has
sound social and psychological basis, and captures the classical
balance theory as a special case. We then propose a convergence
model, describing how an imbalanced network evolves towards
new balance and formulate the convergence problem of a social
network as a Metric Multidimensional Scaling (MDS) optimiza-
tion problem. Finally, we show how the convergence model can
be used to predict edge signs in social networks, and justify our
theory through experiments on real datasets.

I. INTRODUCTION

Modeling trust in very large social networks is a hard
problem due to the highly noisy nature of these networks.
These networks span trust relationships from many different
contexts, based on judgments of reliability, dependability and
competence [1]. Furthermore, trust relationships vary in their
level of strength as participants may or may not know each
other well. One specific problem of interest is inferring new
relationships and making recommendations based on existing
relationships. To this date, many algorithms for such pre-
diction problems are based on machine learning methods.
These methods generate multiple structural features from the
known relationships, and then use these features to classify
the unknown relationships [2][3][4]. In particular, the concept
of structural balance is widely applied when developing these
algorithms. For example, Leskovec et al. generate a class of
“triad features” in their prediction algorithm, i.e. a pair of
relationships constraining a third relationship [4]. They also
use the structural balance as a touchstone to see the congruence
between their practical results and the long studied theory. In
essence, the transitivity of trust and distrust within a triad can
be easily inferred from the balance theory. Other algorithms [2]
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make use of similar assumptions without explicit mention of
balance theory in which trust and distrust relationships are
mapped to metric distances on a continuous range. While these
algorithms show strong prediction performance, there is no
underlying theory that explains how structural balance can be
mapped to metric distances. That is, a theory that stands as
the cornerstone of trust prediction is missing. Without such
a theory, it is not possible to develop principled algorithms
and study to which degree a specific network conforms to the
theory, and to illustrate the importance of various balance re-
lated properties of networks. Furthermore, in today’s networks
in which individuals interact with a large number of others,
one expects that the relationships and their trust level will
vary considerably. As a result, it is not clear how Cartwright-
Harary’s balance theory [5] can be applied to large scale social
networks in which nodes may have different types of trust and
distrust relationships, ranging from strong to weak.

In this paper, we address all these concerns and make
the following unique contributions. First, we introduce a new
extended balance theory that allows arbitrary relationship
strengths. We express balance with two simple principles that
preserve the meanings of trust and distrust: positive and nega-
tive trust relationships. We show how balance can be modeled
when strength of relationships are expressed as either discrete
categorical values, pairwise comparisons or metric distances
using the same principles. Our novel method has sound social
and psychological basis, and captures the classical balance
theory as a special case. Next, we propose a convergence
model, describing how an imbalanced network evolves towards
new balance. The assumption behind our model is that in
resolving tensions within imbalanced relationships, people tend
to avoid the effort of changing relationships if possible. The
introduction of extended balance theory allows us to formulate
the convergence problem of a social network as a Metric
Multidimensional Scaling (MDS) optimization problem. Fi-
nally, we show how the convergence model can be used to
predict edge signs in social networks, and justify our theory
through experiments on real datasets. Stress majorization is
applied to solve MDS [6], and our method consistently matches
and outperforms the state of the art. In addition, we show
promising results towards providing solutions for the harder
link prediction problem [7].

II. STRUCTURAL BALANCE THEORY & RELATED WORK

When modeling relationships between pairs of individu-
als, positive relationships are representative of liking, loving,



valuing or approving someone, and negative relationships are
representative of disvaluing, disapproving or negatively valuing
someone [5]. Suppose we consider trust from the perspective of
trustworthiness where one trusts another if they are considered
to be truthful, to have integrity and to have positive intentions
towards the other. This definition of trustworthiness has a
definite affective component that can easily be considered as
an extension of the above definition. A positive relationship
results in trust because the other person is considered to have
positive values from the perspective of the trustor. Similarly,
a negative relationship results in distrust because the other
person is considered to have specific faults that would prevent
them from being trusted [1].

Trust and distrust are not symmetric constructs. A person
who is not trusted may eventually become trusted as a result
of positive evidence. However, a distrusted person may not be
trusted even after many positive experiences. As a result, one
has to treat both types of relationships differently. Note that
often trust and distrust relationships need not be mutual: A
may trust B, but B may distrust A. However, we will treat all
trust relationships mutual in this paper as in all the methods
we discuss in this section and leave the study of the one-sided
or mutual (cooperative) relationships to future work.

A A A A

+/ \+ - - - -+ / \+

B + C B + C B

- C B
(1) (2) (3)

- C
(4)
Fig. 1. Classic structural balance with four different types of triads

Structural balance theory (SBT) is based on the assumption
that certain types of relationships when viewed from a local
perspective are more natural for psychological reasons [8].
The local level is defined as a triangle or triad consisting
of relationships between three people. It is natural for three
people to be friends: Alice (A) is friends with Bob (B), Bob
is friends with Chris (C) and Chris is friends with Alice. This
triangle (marked (1) in Figure 1) is considered completely
positive. Similarly, a relation where two friends, Bob and Chris
have a common enemy Alice, is also natural (triangle (2) in
Figure 1). It is considered that in such natural relationships,
there is no tension in the interactions. However, it is less
natural for Alice and Bob, and Alice and Chris to be friends,
but Bob and Chris to be enemies (triangle (4) in Figure 1). This
situation is likely to generate tension as now Alice must avoid
spending time with Bob when Chris is around. As a result,
all definitions of structural balance would consider triangles 1
and 2 as balanced, and 4 as imbalanced.

The last type of relationship is one containing all negative
edges. This type of relationship can be considered balanced as
there is no specific conflict when three people all dislike each
other but spend no time together. As a result, in Davis’s weak
structural balance theory (WSBT), triangle (3) is considered
balanced [8][9]. However, there is an opportunity for one of
the pairs in this triangle to become friends, and team up against
the common enemy. For this reason, (strong) SBT, considers
triangle (3) unbalanced as well [5][8].

A complete network in which all pairs of people are
connected to each other satisfies the WSBT if all triangles in it

are balanced with respect to WSBT. In this case, the network
can be divided into a set of communities C4,...,C) such
that within each community, nodes are positively connected,
and across different communities, all connections are negative.
This main result underlies many trust inference algorithms.
Algorithms that attempt to solve the edge sign prediction
problem which involves assessing which links in a network
are positive and which links are negative, are often based on
SBT/WSBT either implicitly or explicitly.

Guha et. al. [3] introduce one of the earliest methods that
addresses the propagation of both trust and distrust. They
propose the concepts of direct propagation, co-citation and
backwards propagation, and compute trust propagation by
repeating matrix operations that combine the three types of
propagations. They report an overall 85% prediction accu-
racy over data samples from Epinion that has equal number
of positive and negative edges. Leskovec, Huttenlocher and
Kleinberg [4] conduct a series of experiments on three large
datasets: Epinions, Slashdot and Wikipedia. In particular, they
collect two classes of features, one of which is based on degree
and the other is based on triads. These relatively local features
form a high dimensional space on which they perform standard
machine learning methods and perform edge sign predictions.
Similar to our work, they interpret some of their results in
terms of the classical balance theory [5], but unlike our work,
they do not use balance theory as a starting point.

The recent work by DuBois et. al. [2] is also related to
our paper from an algorithmic point of view. This work stands
out as it provides very good prediction performance for the
edge sign prediction problem; 80 — 90% on all of the three
datasets used in [4] for both positive and negative edges. In
this work, two features are computed for each signed edge:
the first one is based on path probability (PP, O(n?)) [10]
and the second one uses a force directed algorithm (FD,
O(kn) at each iteration where k is the average degree of the
network) [2]. In the method of FD, the authors map trust and
distrust relationships to metric distances: the larger the distance
is, the more negative (less positive) the relation is. Then, the
edge sign prediction problem is mapped to a graph drawing
problem. In this paper, we show that some of the assumptions
underlying this algorithm can be formally defined as part of
a general structural balance theory that not only works for
simple positive and negative edges, but also takes into account
trust strength when applicable. Being able to deal with strength
also enables us to state the explicit optimization criteria in the
metric space for the graph drawing problem. As a result, we
are able to compare the prediction performance with respect
to an optimal placement of nodes according to our theory. We
show our method matches and outperforms the results of this
method for different data sets.

Notice that both the force directed algorithm (FD) from [2]
and the stress majorization (SM) that we use in this paper have
been used in the field of graph drawing [6]. In FD, an attractive
force is assigned between endpoints of each positive edge and a
repelling force is assigned between endpoints of each negative
edge. Nodes are initially randomly laid out, and the system is
simulated until a stable equilibrium is reached when the total
kinetic energy is below certain threshold. The relation between
every pair of nodes is represented by the distance between the
two end nodes in the stable layout of the network.



While FD is simple to implement, it operates on a local
pairwise level, instead of a global level. This can lead to
problems if the local forces end up not being sufficient to
hold small groups together. Alternatively, if negative forces
are too high, then the network may continuously expand in
space and the algorithm may never converge. As a result, FD
requires carefully tuned parameters for a specific network. In
contrast, SM is a mature approach that guarantees monotonic
convergence for drawing graphs. Moreover, in [2], there is no
force between pairs of unconnected nodes which can result
in unintuitive distances for such pairs. In fact as we show
in our results, the FD method maps unconnected nodes to
a predominantly positive range. This presents a problem for
using this algorithm for solving the link prediction problem [7].
Link prediction is a harder problem since networks are often
sparse and one needs to find the few edges that are true
positive with high probability. We show that our results are
very promising on this front.

In addition, to the best of our knowledge, none the existing
methods provide a principled way to study the principles un-
derlying trust and distrust relationships in very large networks
with varying degrees of relationship strengths. It is unclear to
which degree SBT or WSBT balance theory is valid for many
large networks in which some or most relationships are simple
acquaintances [11] instead close friendship relationships. An
acquaintance may not result in the same type of structural
constraints. For example, if Alice knows Bob, and Bob knows
Chris, but Chris dislikes Alice, this may not cause much
stress in the existing relationships if Alice, Bob and Chris
rarely spend time with each other, i.e. their relationship is
not strong. However, there are still some implications for
the network overall when we consider acquaintances as well
as friendships. We examine those in the next sections and
provide a flexible theory of balance that generalizes WSBT.
We show that our theory allows us to formulate convergence
as an optimization problem, which can be solved by stress
majorization and illustrate that our algorithm achieves better
performance than those cited in the literature [2] while also
providing a principled way to approach the link prediction
problem when signed edges are present.

III. EXTENDED STRUCTURAL BALANCE THEORY (ESBT)

In this section, we introduce a new and more fine-tuned
way to define structural balance that we will call extended
structural balance theory, or ESBT for short. The psychological
explanation for weak structural balance relies on the concept
of stress. Certain situations cause stress in interactions and as
a result, are not considered natural. So, in balanced situations
such stress must not exist. We define this stress more precisely
as a function of the strength of relationships.

In classical balance theory, relations are restricted to binary
values (+/—), which we interpret as trust and distrust. When
Cartwright and Harrary first formalized the theory of structural
balance, they also suggested that relationships of interest exist
in varying degrees, and that their theory is built on the
incomplete representation of strengths of relations [5]. Tie
strength is a well-studied concept in social psychology. A
person may have close friends and acquaintances (strong/weak
ties), with different trust expectations. A strong tie may repre-
sent a trust relation corresponding constructs relevant to high

risk situations, while a weak tie may be trusted for low risk
situations like providing private information [11].

To model this distinction, we consider a scenario where
relationships have varying strengths. A strong positive link
represents a close friendship or family tie, i.e. strong trust
constructs, and a strong negative link represents hatred, i.e.
strong distrust constructs. However, many other types of trust
relationships may exist in between the spectrum of (strong)
trust and (strong) distrust. For example, a negative bias may
be considered a weak distrust and a weak tie may represent
weak (positive) trust.

A complete balance theory should be able to deal with
relationhips with strengths. As a first step, we need to have
a measurement of relations with various strengths. While
it is arguable whether such strengths can be expressed by
numerical values, it is fairly clear that the strength of any two
relations can be compared. For positive relations such as liking,
valuing or approving, two relationships are comparable in
terms of which one is stronger than the other. Similar argument
applies to two negative relations. Finally, a positive relation
and a negative relation are comparable by their signs. Hence,
relations with strengths by nature inherit a total ordering.

Let the collection of relations with strengths be E. An
edge (A, B) and a relation with associated strength e will be
used interchangeably in later discussion. We pick the ordering
=< such that, e; < es denotes e; is positively equivalent to or
stronger than (or negatively equivalent to or weaker than resp.)
eo. That is, if e, eo are both positive relations, e; =< es if €1
is at least as positive as e in terms of strengths; if e, eq are
both negative relations, e; =< eg if e; is at most as negative
as eg in terms of strengths; if e, es are of different signs,
e1 X eq if e; is positive and e, is negative. In the simplest
case where we have only positive and negative relations, we
have that + < —.

We also consider a neutral relationship as one that is
unbiased, which will be denoted as O. Basically a neutral
relationship is a non-negative and non-positive relationship,
corresponding to no opinion and no bias. In the case of incom-
plete networks, classic balance theory implicitly considered
two types of triads with neutral relations balanced: “+, 4+, O”,
“+,—,0” [8]. With the introduction of neutral relations, F
can be partitioned into three subsets: positive relationships P,
negative relations N and neutral relations O. Following the
definition of ordering =, it is clear that for any e, € P,
eo € 0,e_ € N, er = eo = e_ holds. We use (e, e2)
to denote the set of relations (e1,e2) = {e | e; < e <X e2}.
Hence, given (ej,es), the lower bound e; represents the
strongest possible relationship and the upper bound represents
eo represents the weakest possible relationship in this range.

A. Principles of Structural Balance

A triad is the smallest unit in balance theory, within which
two of its relations cause influence over the third one. Such
an influence will limit the range of comfortable relations of
the third relation in a balanced state; and if it goes out of
range, tension occurs and participants will suffer from stress.
Participants will seek relationship changes to resolve this type
of stress. We call such range of relations tolerance, with which
we interpret structural balance at a finer level.



Given a network of nodes G = (V,E), there exists a
tolerance for each pair (A, B) of nodes of the form (e, es)
which is constrained by the triads (A, B) is part of. When
there is no constraint, i.e. stress, on a specific relationship,
the tolerance includes any relationship in £. We propose two
principles regarding tolerance: transitivity and heterophily.

Principle 1 (Transitivity of positive relationships): Let in-
dividuals A, B, C in a network form a traid, and (A, B),
(A,B), (B,C) be positive. Suppose T = (e}, e5) denotes
the tolerance of (A, C') based on relations (A, B), (B, C), and
T' = (€}, ) denotes the tolerance based on (A, B)', (B, C).
If (A, B)" < (A, B) then we have that e}, < e5.

Furthermore, there exists a ez, € P such that if (A4, B) <
esp and (B, C) =< e, then e; = ep holds for all eg € O.
That is, T" will only have positive relations beyond a certain
threshold eg),.

In other words, the fact that B are friends with both A and C
provides the freedom for A and C' to become friends; and there
is stress on A and C to get close. The stronger the relation
between (A, B) and (B, C), the higher the stress between
(A,C) to be connected (more) positively, and the resulting
tolerance is restricted to be more positive.

The stress that is based on positive relations has been
frequently defined by SBT and WSBT. Positive relations in a
triad cause stress for the remaining relations to be positive. As
a result, both in SBT and WSBT, a balanced network consists
of communities that are connected to each other with positive
ties. When we consider the strength of relations, we generalize
this by saying that the more positive two of the relations are
in a tie, there is lesser tolerance for negative trust values.

There is a point when the strength of the two positive
relations are strong enough such that it is imbalanced for
(A,C) to remain unfriended, i.e. neutral. This observation
is inspired by the “strong triadic closure” in [8]. In trust
literature, it is often referred as the “transitivity of trust” though
transitivity is also used in other contexts.

Principle 2 (Heterophily in relationships): Let individuals
A, B, C in a network form a triad. Suppose T =
(e1,ea) denotes the tolerance of (A,C) based on relations
(A,B),(B,C), and T" = (€, e4) denotes the tolerance based
on (A,B),(B,C). We have that if (4,B) < (A,B) <
(B,C), or (B,C) < (A,B) < (A,B)', then e; < €.

Furthermore, suppose there is a well-defined concept of
difference between two relations with strengths. Then, the
larger difference between (A, B) and (B, C) is, less positive
ey (the lower bound) is.

Given individuals A, B, C in a network, if the relationship
between (A, B) and the relation between (B,C) differs to
some extent, then the tolerance is geared towards the negative.
Furthermore, the more different the strength of the relation-
ships are, the tolerance is geared towards more negative values.

The second type of stress is an interpretation of ho-
mophily. We note that homophily, i.e. having common friends
or enemies, may sometimes cause stress (in +,-+,+) but
sometimes it does not (in —, —, — for WSBT). However, lack
of homophily, which we call heterophily does cause stress.
For example, consider the case +,+,— for (A, B), (B,C)

and (A, C). There is stress on (A,C) to be positive due to
transitivity. But, there is also stress on (A, B) and (B,C) to
be negative. Either way, the result will be more desirable: either
all being friends, or having two friends with a common enemy.
We call the second type of stress the principle of heterophily.
The more different the ties are (the strongest difference is
between distrust and trust, and the weakest difference is
between two identical trust ties), the more pressure there is
for the tie to be negative. At a point when the difference
between (A, B) and (B, C) is significant enough, we argue
that a positive value for (A, C') will cause imbalance. This is
inspired by the observation that two people who have severely
conflicted relationships with a common neighbor, e.g., one is
the other’s close friend’s enemy, are not likely to be friends.

(A,B) (A,C) | Tolerance for (B, C)
—+ + (+,0) Transitivity
+ — (0, —) Heterophily
- — (+, —) No stress
TABLE L. TOLERANCE RULES IN STRUCTURAL BALANCE THEORY

The two principles help interpret balance in terms of
relations with strengths precisely. A triad is balanced if all
relationship strengths are within the tolerance implied by the
other relationships in the triad.

Definition 1 (Balance): A triad A, B, C' is balanced if for
all pairs (A, B), given the tolerance (ej,es) of (A, B) with
respect to (B,C), (A,C), we have that (A, B) € (ey,e2).
Given a network G of relationships, G is said to be balanced
if for all triads in the network are balanced.

The tolerance rules for the Davis’s balance theory are given
in Table 1. Notice that neutral relations “O” are also added.
This is because triangles “+4, 4+, O” and “+, —, O” are allowed
implicitly in their theory in the general case of incomplete
graphs. According to the table, triads (1), (2) and (3) from
Figure 1 are balanced as each relation strength is within the
tolerance, but triad (4) is not balanced. Hence, our theory
generalizes WSBT in the classical balance theory.

B. Balance theorems with weak and strong ties.

In this section, we show how our reasoning can be applied
to a network with multiple types of relationships. We consider
a set of discrete labels (shown in Table II) that have been
discussed in previous literature and show that we can reason
about balance in such a network using our two principles.

Strong positive ties, s+ (trust) are similar to a close friend-
ship. There is a strong expectation of reciprocity, similarity
of tastes (homophily), common intentions and benevolence
towards each other [12]. The traditional definition of SBT is
based on these types of positive relationships.

Strong negative ties, s- (distrust) are generally explained
as having negative experiences with someone which is in-
dicative of their negative intentions, unreliability and overall
belonging to groups that are not considered trustworthy [13].
Even when a distrusted person behaves in a trustworthy way,
this could be considered a trick to get one to trust them.

However, these are not all the different classes of relation-
ships that one might consider in a network. While one might
consider a continuum of tie strength, we summarize some



Relation Type Interpretation

Triads and the argument for stress

Strongly positive (s+)
Weakly positive (w+)
Neutral (O)

close friendship, trust
aquiantance

unbiased relation, no relation
Weakly negative (w-) minor disagreement, negative bias
Strongly negative (s-) hatred, distrust

TABLE II. STRENGTH OF RELATIONS: s+ X w+ X 0 2 w— < s—.

additional discrete classes. Weak positive ties, w+ (weak
trust) can be considered a utilitarian type of trust. Interacting
with someone who is only trusted partially is more risky, but
can be acceptable in certain situations. For example, Uzzi [14]
uses the term embedded vs. arm’s length ties to distinguish
between the two types of trust. While a close friend is highly
trusted, they may not have access to the resources a more risky
contact may provide. Granovetter [11] uses the term weak tie
to talk about a relationship that is an acquaintance, not a close
friend. Weak ties give access to less privileged information
than strong ties, but come from outside of one’s close network.
In both cases, there is a trust relationship between two people,
but this does not imply a continuous interaction or a strong
affective component as in trust.

We also introduce weak negative ties, w- (weak distrust)
to model cases in which there is a certain amount of distrust as
a result of biases stemming from social groups people belong
to or heresay that may not be as strong as distrust [15]. In
essence, the burden of proof of one’s trustworthiness is much
higher in distrust than in weak distrust, but in both cases,
positive evidence is not evaluated in the same way as in trusting
relations. These five types of relationships are summarized in
Table II.

(A,B) (A,C) (B,C)s (A,B) (A,C) (B,C)s
tolerance tolerance
s+ s+ (s+, w+) w+ w— (w+, s—)
s+ w—+ (s4,0) w—+ s— (O, s—)
s+ (0] (s4,w—) (0] [0) (s+,s—)
s+ w— (O, s—) 0o w— (s4,s—)
s+ s— (w—, s—) 0o s— (w+, s—)
w4 w+ (s+,w—) w— w— (s4,s—)
w+ (o) (s4,5—) w— s— (s+,s—)
s— s— (s+,s—)
TABLE III. TOLERANCE OF STRONG, WEAK & NEUTRAL RELATIONS

Given these relationship types, we now describe the tol-
erance for different triads in Table III and the resulting
imbalanced triads or structures in Table IV. Notice that the
triads with two positive relations and one negative relation are
imbalanced as they are in classic balance theory, except for the
cases in which all three relations as weak. In fact, the types of
triads that consist of weak relations and neutral relations only
are not considered to be imbalanced structures. The argument
here is that when all relations are weak or neutral, the influence
inside the triad is not significant enough to draw tension. Also,
triads of type “s+ s+ O” and “s+ s— O” are considered to
be imbalanced structures. The arguments against each type of
imbalanced structure is listed in Table IV.

C. Relation Distance and General Expression of Balance

The concept of extended balance is meaningful only if the
tolerance rules can be explicitly defined, so that whether a triad
and a network is balanced or not can be determined. Whenever
relations are drawn from a finite and small set, this is easy to

(s+s+s—)(st+stw—) (stwt+s—) (stw+s—) (wtw+s—):
my two friends cannot get along with each other

(s + s+ O): my two close friends do not friend each other
(s + s — O): my enemy’s close friend does not pick a side

TABLE IV. IMBALANCED TRIADIC STRUCTURES IN THE PRESENCE OF

STRONG AND WEAK TIES.

do. However, it is considerably more complex in the general
case when the strengths of relations are drawn from arbitrary
numerical values.

To handle such cases, we refine the measurement of re-
lations with strengths from a total ordering to positive real
values. In particular, we define function v : £ — R™ such
that, for two relations e1,es € E, ¥(e1) < t(eq) if and
only if e; < es. Since positive values can be seen as metric
distances, we call 1 (e) the relation distance of e. In other
words, relations with varying strengths are represented by
distances with different lengths. More negative strengths are
represented by larger distances and more positive strengths
are represented by smaller distances. We propose the following
general rule of tolerance with the concept of relation distance.

Definition 2: Given adjacent relations
and (B,C), the tolerance of (A,C) is

It can be easily checked that the general tolerance rule
agrees with Principle 1 and 2 by substituting < for <.
Immediately, we have the following theorem.

(4, B)
given by

Theorem 1: Given a triad (A, B, C), if ¥(A4, B), ¥(B, C),
(A, C) satisfies the metric triangle inequality, then (A, B, C)
is balanced.

To illustrate how the distances can be used to represent
a given set of strength values, we revisit WSBT. Consider
two thresholds: by < b_ such that if ¢(e) > b_ then the
relationship e is negative. Similarly, if ¥(e) < by, then e is
a positive relationship. For any value by < t¢(e) < b_, the
relationship is considered neutral. We can see that as long as
b_ > 2b,, Table I is equivalent to Definition 2.

strong weak weak strong

neutral

positive positive edge negative positive
edge edge 9 edge edge
0 s+ bs+ W+ bw+ o buw- w- bs- s-
Fig. 2. Partitioning of distances: (0,bs+] : s+, (bs4,bw+) : w—,

bw+,bw—]: O, (byw—,bs—) : w—, and [bs—, 00) : w+.

Similarly, to capture the example from Section III-B, we
consider the partitioning of the distance domain given in
Figure 2. We can see that if the following conditions are
satisfied for the boundary parameters:

b+ > 2bgy
bs— > 2by, 4

bs_ > by + by
bw_ > bw+ +bs+

the tolerance given in Table III are equivalent to Definition 2,
and all triads shown in Table IV are imbalanced according to
metric triangle inequality.



IV. CONVERGENCE MODEL

Researchers have long argued that every social network has
a tendency towards a balanced state [16]. The next question
of interest is if an imbalance rises, in what way will a social
network change towards a new balance. It is noted in social
psychology literature that people are reluctant to make changes
in relations as they tend to avoid the effort needed to make such
changes. In a balanced triadic relation, participants are likely
to do nothing and keep their pairwise relations as what they
were. In an imbalanced triadic relation, participants are likely
to make the smallest effort possible to regain triadic balance.
We define the concept of relation cost as the effort one needs to
take to accomplish a certain relation change. Our convergence
model is established based on a unified assumption: every
social network converges in a way that requires as little total
change in relations as possible to reach a balanced state.

With the concept of relation distance, we are able to
express the structure of a social network by drawing it in the
Euclidean space. The strength of each relation is expressed
by the distance between their locations. Notice that every
layout in the Euclidean space automatically satisfies the metric
triangle inequality, and hence corresponds to a balanced state
of the network. For an imbalanced social network, it is not
possible to draw it using its initial relation distances. Hence,
our convergence model produces a layout of the social network
with minimum total relation cost from the original one.

Let G = (V, E) denote an arbitrary social network, and
G* = (V, E*) denote a balanced state of GG. Let n * n matrix
X denote the layout of G*, with each row vector z; denoting
node #’s location in m-dimensional space. For each pair (3, j),
(4, j) denotes its relation distance in G, and d; ;(X) denotes
distance between 7 and j in X, i.e., its relation distance in G*.
Given an edge (¢,j) € F, the relation cost on (¢, j) is given
by:

Ci i (X) = wy(i ) * (dij(X) = (i, §))*

where the weight value is a function of the original distance.
The weight function can take into account the difficulty of
changing a relation. For example, it is generally easier to
change a neutral relation than a positive or a negative relation
that incorporate an initial bias. The study of optimal weights
is beyond the scope of this paper. However, we consider three

main classes of weights:
wy if ¥ (i,7) is a positive edge
Wy(ij) = {4 WO if ¥(i,7) is a neutral edge
w_ if (i, 7) is a negative edge

If wo << w4 and wo << w_, then neutral edges
would have very little influence on the already established
positive/negative relations.

Definition 3: Let G = (V, E) be a social network where
E is a set of weighted edges. Its converged network G* =
(V,E*) is given by layout matrix X with d; ;(X) as the
relation distance between every pair (i, 7), such that the total
relation cost o(X) is minimized:

o(X) = min Z Wy g) * (dij(X) = 96, 5))?

i<j<n

The optimization of relation cost is in fact a Metric
Multidimensional Scaling problem (MDS) by assigning nodes
a location in metric space. The total cost function is called
stress in MDS, and is often minimized through an optimization
strategy called stress majorization [6]. Stress majorization is
an iterative method that guarantees monotonically decreasing
stress in each iteration, and returns a locally minimum solution.
It is recognized as a principled technique in the field of graph
drawing. The algorithm, however, requires O(n?) time and
O(n?) space. Due to its complexity, stress majorization is
applicable on graphs with limited size when missing edges
are explicitly represented as neutral ties. We are in the process
of developing an approximation method for this problem
as a result. In this paper, however, we will investigate the
performance of the exact solution to stress majorization.

V. EXPERIMENTAL RESULTS

In this section, we first focus on the edge sign prediction
problem. Suppose we are given a social network with signs,
but a small fraction of the edge signs are “hidden”. How can
we predict these signs with the information provided by the
rest of network? The convergence model is able to predict
these “hidden” signs. Let’s denote the original social network
with all signed edges as G, the network consisting of hidden
edges as Gj,, and the network consisting of the remaining
edges as G,.. The edges (relations) between each pair of nodes
is measured by {4, —, O}. We run the convergence model
on G, and denote the network after convergence as G;,. We
expect that the signs of the hidden edges in G;, largely agree
with the true signs.

By the assumption that every social network has a tendency
towards balance, it can be inferred that G is largely balanced
at any moment. Hence, the majority of GG, is balanced. The
only exceptions are the components with hidden edges, which
are of sign O in G,. By the principle of total relation cost
minimization, the changes mostly occur on the O-sign hidden
edges during the convergence. We expect the hidden edges in
G, to have their true signs in G;, if G is largely balanced.

We compare our algorithm to force directed algorithm (FD)
in [2]. Note that we have tuned our implementation of FD
to provide similar performance reported in this work. Even
though this work combines two algorithms, in our comparison
experiments, we find that FD alone gives equally good pre-
diction performance on all three datasets as the combination.
Due to space limitations, we exclude the detailed study of PP
and FD/PP combination from this paper.

‘We use the same three datasets as it is in [2] [4] to conduct
our experiments, all provided by the Stanford Large Network
Dataset Collection. (1) Epinions is a product review website
where users give reviews and ratings on product articles. Users
can choose to trust or distrust others. The network contains
more than 100,000 users and over 700,000 trust/distrust edges.
(2) Slashdot is a technology news website where users rate
each other as friends or foes. The dataset released in February
2009 contains over 77,000 users and over 900,000 friend/foe
edges. (3) Wikipedia elections collects the votes by Wikipedia
users in elections for promoting candidates as administrators.
Each user can give a supporting (positive) or opposing (nega-
tive) vote on the promotion of another. The dataset has about
7,000 users and around 100,000 votes (edges).
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Data: M, k,deg, G
Result: Pt, Nt
Get G’ = generate-subgraph(M, k, deg, G);
Partition G’ into 10 groups of test and training samples;
Create two empty sets Pt, Nt;
for each of the groups do
run SM on the training sample and get the layout;
for each edge e in the testing sample do
compute its distance in the layout;
if e is a positive edge then
| add its distance to Pt;
else
| add its distance to Nt;
end
end

end
Algorithm 1: SM Prediction

All edges are treated as undirected. Running SM on the
entire dataset is infeasible due to both the memory and
computational cost. As a result, we generate random samples
of our datasets using snowball sampling method in which a
small number k£ of seeds with degree greater than a given
threshold deg are selected at random, then all nodes that are
adjacent to the seed node are selected iteratively until the
desired network size is reached. In our practice, the size of the
resulting graph is in the range 3,000-5,000 nodes, k is chosen
from 2-10 randomly and deg is chosen from 7-20 randomly.
For each dataset, we generate 10 sub-networks and perform
10-fold cross validation. The number of edges in a sub-
network of Epinions is around 180,000, for Slashdot 65,000
and for Wikipedia 160,000. In the implementation of SM, the
partitioning of the distance domain satisfies b,y < 1/2b_,
conforming to our theory. The weight of each type of edge
satisfies wo << w4 < 1/2w_. The first inequality has been
argued in the previous section. The second one is chosen
empirically, indicating that a negative edge has larger influence
than a positive one. We use the same setting for all the
networks and do not employ any other adjustable parameters.

Edge Sign Prediction. The distances of testing edges are
computed by the layout of the training data. Given a distance
threshold, the sign of each edge is predicted as positive if and
only if its distance is smaller than the threshold. In the previous
work, such threshold is computed from the (distance,sign)

080 01 02 03 04 05 06 07 08 09
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080 01 02 03 04 05 06 07 08 0.9
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The ROC curves are drawn upon distances of hidden edges, generated by SM and FD for (1) Epinions, (2) Slashdot and (3) Wikipedia datasets.

pairs of the training samples using standard machine learning
techniques [2][4]. In this paper, however, we do not concentrate
on the learning process. The issue of interest is how good
the convergence model performs in separating hidden positive
edges from negative ones in terms of distance. Instead of
making predictions based on a particular threshold, we draw
ROC curves for evaluation which capture the performance of
sign prediction for both positive and negative edges across all
thresholds and compute the false and true positive rates based
on the computed Pt (INt) values returned by the Algorithm 1.
The ROC curves in Figure 3 are drawn upon the Pt (Nt)
values from the accumulation of all testing samples.

For all three datasets, we find the ROC curve of SM is on
the “northwest” side of the one of /"D, which indicates SM is
consistently better than F'D in separating hidden positive edges
from negative ones. Notice that the improvement for Slashdot
is the most significant one among the three, possibly due to the
fact that Slashdot edges represent “friends” or “foes”, which is
by nature a more clear identification of trust/distrust compared
to votes in Wikipedia or distrust for reviews in Epinions.
As a result, our convergence model produces a very good
prediction performance. On the Epinions and Slashdot datasets,
the best thresholds on ROC curve give 88 — 90% accuracy on
both positive and negative hidden edges. For Wikipedia, SM
achieves 83 — 85% at the best threshold. The accuracy rates of
Epinions and Wikipidea match the best results from previous
work, and Slashdot appears to be the best so far.

General Link Prediction. The edge sign prediction only deals
with the cases in which we already know that an edge exists in
the original network. A more general and harder problem is to
predict whether there is a positive or a negative edge between
a pair of nodes (link prediction [7]). The difficulty of these
problems stem from the fact that social networks are usually
sparse with a lot more neutral relations than biased relations.
Our convergence model should be able to make general edge
predictions based on distances. If larger distances represent
more negativeness (less positiveness), then the distance of a
neutral relation should be smaller than a negative one and
larger than a positive one. As a consequence, the distribution
of neutral edges in terms of distance should concentrate in the
middle range. We study this distribution, as a preliminary step
towards solving the general edge prediction.

For each dataset, we generate samples based on random
source nodes as before, except that we exclude the edges
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Fig. 4. The histograms are drawn upon distances of neutral testing edges, generated by SM and FD for (1) Epinions, (2) Slashdot and (3) Wikipedia datasets.

between the k source nodes. Instead of cross validation, we
use the entire sub-network for training, and use the k(k—1)/2
edges between the k source nodes as testing data, whose
signs are available in the original dataset (positive, negative or
neutral, i.e. no link). After convergence the distances of these
edges should be representative of their true signs. We repeat
the experiments 50 times over all three datasets, and collect
the distances for only the neutral testing edges. Figure 4 shows
that the distances of neutral testing edges generated by SM do
relatively concentrate in the middle-range of values following
an almost Gaussian distribution. In contrast, the majority of
neutral testing edges’s distances by FD have small values,
implying a positive prediction is much more likely for FD than
for SM. However, SM provides more flexibility as the distances
are distributed over a larger range with an almost Gaussian
distribution, allowing us to test different tunable algorithms.
As a result, our model is a good starting point for developing
algorithms for solving the general link prediction problem.

VI. CONCLUSIONS

In this paper, we introduced a general model for structural
balance theory that can handle relation strengths and general-
izes the classical balance theory. We showed that our notion
of balance can be mapped to triangular inequality over metric
distances and the issue of convergence can be modeled as
the metric multidimensional scaling problem for which stress
majorization provides exact solutions. We have shown that our
theory can be used to effectively solve the edge sign prediction
problem and its performance matches and exceeds state of the
art for this problem. This is due to the fact that positive and
negative edges are mapped to a continuous range of strengths
based on the constraints provided by the other nodes. However,
in contrast with previous work, our method is aware of global
constraints based on balance which results in better results
overall. Furthermore, the solutions provided by our method
can also be used to solve the harder link prediction problem.

We are investigating various avenues of future work. An
approximation algorithm of stress majorization has been de-
veloped in the context of social networks. Furthermore, we
are currently testing how the inclusion of relation strength
improves performance by considering other actions of the users
that imply the existence of a social tie. Our method also has
applications to many related problems like clustering and link
prediction, which we are currently investigating. We are study-
ing the various properties of our theory in general networks

and how it can be extended to an asymmetric interpretation
of links. Our method also allows us to study and compare
the characteristics existing networks towards balance such as
the ratio between positive and negative distances, distribution
of neutral edges. These measures can help us develop new
insights into the nature of adversarial relationships in different
networks.
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