
CHAPTER

TWENTYTWO

LECTURE 12 — CONTROLLING LOOPS

22.1 Restatement of the Basics

• for loops tend to have a fixed number of iterations computed at the start of the loop

• while loops tend to have an indefinite termination, determined by the conditions of the data

• Most Python for loops are easily rewritten as while loops, but not vice-versa.

– In other programming languages, for and while are almost interchangeable, at least in principle.

22.2 Overview of Today

• Ranges and control of loop iterations

• Nested loops

• Lists of lists

• Contolling loops through break and continue

Reading: Practical Programming, rest of Chapter 9.

22.3 Part 1: Ranges and For Loops— A Review

• A range is a function to generate a sequence of integers:

for i in range(10):
print(i)

outputs the digits 0 through 9 in succession, one per line.

– Remember that this is up to and not including the end value specified!

• A range is not quite a list — instead it generates values for each successive iteration of a for loop.

– For now we will convert each range to a list as the basis for studying them.

• If we want to start with something other than 0, we provide two integer values

>>> list(range(3,8))
[3, 4, 5, 6, 7]

• With a third integer values we can create increments. For example,

103

CSCI-1100 Course Notes, Release

>>> list(range(4,20,3))
[4, 7, 10, 13, 16, 19]

starts at 4, increments by 3, stops when 20 is reached or surpassed.

• We can create backwards increments

>>> list(range(-1, -10, -1))
[-1, -2, -3, -4, -5, -6, -7, -8, -9]

22.4 Using Ranges in For Loops

• We can use the range to generate the sequence of loop variable values in a for loop. Our first example is
printing the contents of the planets list

planets = ['Mercury', 'Venus', 'Earth', 'Mars', 'Jupiter',
'Saturn', 'Uranus', 'Neptune', 'Pluto']

for i in range(len(planets)):
print(planets[i])

(In this case we don’t need a index variable - we can just iterate over the values in the list.)

• The variable i is variously known as the index or the loop index variable or the subscript.

• We will modify the loop in class to do the following:

– Print the indices of the planets (starting at 1!)

– Print the planets backward.

– Print every other planet.

22.5 Loops That Do Not Iterate Over All Indices

• Sometimes the loop index should not go over the entire range of indices, and we need to think about where
to stop it early, as the next example shows.

• Example: Returning to our example from Lecture 1, we will briefly re-examine our solution to the following
problem: Given a string, how can we write a function that decides if it has three consecutive double letters?

def has_three_doubles(s):
for i in range(0, len(s)-5):

if s[i] == s[i+1] and s[i+2] == s[i+3] and s[i+4] == s[i+5]:
return True

return False

• We have to think carefully about where to start our looping and where to stop!

• Refer back to Lecture 10 for further examples

22.6 Part 1 Practice

We will only go over a few of these in class, but you should be sure you can handle all of them

104 Chapter 22. Lecture 12 — Controlling Loops

CSCI-1100 Course Notes, Release

1. Generate a range for the positive integers less than 100. Use this to calculate the sum of these values, with
and without (i.e. use sum) a for loop.

2. Use a range and a for loop to print the positive, even numbers less than the integer value associated with n.

3. Suppose we want a list of the squares of the digits 0..9. The following does NOT work

squares = list(range(10))
for s in squares:

s = s*s

Why not? Write a different for loop that uses indexing into the squares list to accomplish our goal.

4. The following code for finding out if a word has two consecutive double letters is wrong. Why? When, specif-
ically, does it fail?

def has_two_doubles(s):
for i in range(0, len(s)-5):

if s[i] == s[i+1] and s[i+2] == s[i+3]:
return True

return False

22.7 Part 2: Nested Loops

• Some problems require iterating over either

– two dimensions of data, or

– all pairs of values from a list

• As an example, here is code to print all of the products of digits:

digits = range(10)
for i in digits:

for j in digits:
print("{} x {} = {} ".format(i,j,i*j))

• How does this work?

– for each value of i the variable in the first, or “outer”, loop, Python executes the entire second, or inner,
loop

– Importantly, i stays fixed during the entire inner loop.

• We will look at finding the two closest points in a list.

22.8 Example: Finding the Two Closest Points

• Suppose we are given a list of point locations in two dimensions, where each point is a tuple. For example,

points = [(1,5), (13.5, 9), (10, 5), (8, 2), (16,3)]

• Our problem is to find the two points that are closest to each other.

– We started working on a slightly simpler version of this problem at the end of Lecture 10.

• The natural idea is to compute the distance between any two points and find the minimum.

22.7. Part 2: Nested Loops 105

CSCI-1100 Course Notes, Release

– We can do this with and without using a list of distances.

• Let’s work through the approach to this and post the result on the course website.

22.9 Part 3: Lists of Lists

• In programming you often must deal with data much more complicated than a single list. For example, we
might have a list of lists, where each list might be temperature (or pH) measurements at one location of a
study site:

temps_at_sites = [[12.12, 13.25, 11.17, 10.4],
[22.1, 29.3, 25.3, 20.2, 26.4, 24.3],
[18.3, 17.9, 24.3, 27.2, 21.7, 22.2],
[12.4, 12.5, 12.14, 14.4, 15.2]]

• Here is code to find the site with the maximum average temperature; note that no indices are used.

averages = []
for site in temps_at_sites:

avg = sum(site) / len(site)
averages.append(avg)

max_avg = max(averages)
max_index = averages.index(max_avg)
print("Maximum average of {:.2f} occurs at site {} ".format(max_avg, max_index))

• Notes:

– for loop variable site is an alias for each successive list in temps_at_sites

– A separate list is created to store the computed averages

– We will see in class how this would be written without the separate averages list.

22.10 Part 4: Controlling Execution of Loops

• We can control loops through use of

– break

– continue

• We need to be careful to avoid infinite loops

22.11 Using a Break

• We can terminate a loop immediately upon seeing the 0 using Python’s break:

sum = 0
while True:

x = int(input("Enter an integer to add (0 to end) ==> "))
if x == 0:

break
sum += x

106 Chapter 22. Lecture 12 — Controlling Loops

CSCI-1100 Course Notes, Release

print(sum)

• break sends the flow of control immediately to the first line of code outside the current loop, and

• The while condition of True essentially means that the only way to stop the loop is when the condition that
triggers the break is met.

22.12 Continue: Skipping the Rest of a Loop Iteration

• Suppose we want to skip over negative entries in a list. We can do this by telling Python to continue when it
the loop variable, taken from the list, is negative:

for item in mylist:
if item < 0:

continue
print(item)

• When it sees continue, Python immediate goes back to the “top” of the loop, skipping the rest of the code,
and initiates the next iteration of the loop with a new value for item.

• Any loop that uses break or continue can be rewritten without either of these.

– Therefore, we choose to use them only if they make our code clearer.

– A loop with more than one continue or break is rarely well-structured, so if you find that you have
written such a loop you should stop and rewrite your code.

• The example above, while illustrative, is probably better without the continue.

– Usually when we use continue the rest of the loop is relative long. The condition that triggers the
continue is tested at or near the top of the loop.

22.13 Termination of a While Loop

• When working with a while loop one always needs to ensure that the loop will terminate! Otherwise we have
an infinite loop.

• Sometimes it is easy to decide if a loop will terminate. Sometimes it is not.

• Do either of the following examples cause an infinite loop?

import math
x = float(input("Enter a positive number -> "))
while x > 1:

x = math.sqrt(x)
print(x, flush=True)

import math
x = float(input("Enter a positive number -> "))
while x >= 1:

x = math.sqrt(x)
print(x, flush=True)

22.12. Continue: Skipping the Rest of a Loop Iteration 107

CSCI-1100 Course Notes, Release

22.14 Summary

• range is used to generate a sequence of indices in a for loop.

• Nested for loops may be needed to iterate over two dimensions of data.

• Lists of lists may be used to specify more complex data. We process these using a combination of for loops,
which may need to be nested, and Python’s built-in functions. Use of Python’s built-in functions, as illus-
trated in the example here in these notes, is often preferred.

• Loops (either for or while) may be controlled using continue to skip the rest of a loop iteration and using
break to terminate the loop altogether. These should be used sparingly!

108 Chapter 22. Lecture 12 — Controlling Loops

	Lecture 1 — Introduction
	Lecture 2 — Python as a Calculator
	Lecture 2 — Exercises
	Lecture 3 — Python Strings
	Lecture 3 — Exercises
	Lecture 4 — Using functions and modules
	Lecture 4 — Exercises
	Lecture 5 — Python Functions
	Lecture 5 — Exercises
	Lecture 6 — Decisions
	Lecture 6 — Exercises
	Lecture 7 — Lists Part 1
	Lecture 7 — Exercises
	Lecture 8 — Tuples, Modules, Images
	Lecture 8 — Exercises
	Lecture 9 — While Loops
	Lecture 9 — Exercises
	Lecture 10 — Lists Part 2
	Lecture 10 — Exercises
	Lecture 11 — Decisions Part 2
	Lecture 11 — Exercises
	Lecture 12 — Controlling Loops
	Lecture 12 — Exercises

