CHAPTER

TWENTYNINE

LECTURE 16 — DICTIONARIES, PART 1

29.1 Overview

More on IMDB
Dictionaries and dictionary operations
Solutions to the problem of counting how many movies are associated with each individual

Other applications

29.2 How Many Movies is Each Person Involved In?

Goals:
— Count movies for each person.
— Who is the busiest?
— What movies do two people have in common?

Best solved with the notion of a dictionary, but we’ll at least consider how to use a list.

29.3 List-Based Solution — Straightforward Version

Core data structure is a list of two-item lists, each giving a person’s name and the count of movies.

For example, after reading the first seven lines of our shortened hanks . txt file, we would have the list

[["Hanks, Jim", 3], ["Hanks, Colin", 1],
["Hanks, Bethan", 1], ["Hanks, Tom", 2]]

Just like our solution from the sets lectures, we can start from the following code:

imdb_file = input("Enter the name of the IMDB file ==> ").strip()
count_list = []
for line in open(imdb_file, encoding = "IS0-8859-1"):

words = line.strip().split('["')

name = words[0].strip()

Like our list solution for finding all IMDB people, this solution is VERY slow — once again O(N?) (“order of
N squared”).

131

CSCI-1100 Course Notes, Release

29.4 List-Based Solution — Faster Version Based on Sorting

¢ There is an alternate solution that would work for the number of unique names solution from lecture 15 as
well. It is based on sorting.

¢ Append each name to the end of the list without checking if it is already there.
¢ After reading all of the movies, sort the entire resulting list

— As aresult, all instances of each name will now be next to each other.
¢ Go back through the list, counting the occurrence of each name

¢ This solution will be much faster than the first, but it is also more involved to write than the one we are about
to write using dictionaries

29.5 Introduction to Dictionaries

¢ Association between “keys” (like words in an English dictionary) and “values” (like definitions in an English
dictionary). The values can be anything.

¢ Examples:

>>> heights = dict()

>>> heights = {} # either of these works

>>> heights['belgian horse'] = 162.6

>>> heights['indian elephant'] = 280.0

>>> heights['tiger'] = 91.0

>>> heights['lion'] = 97.0

>>> heights

{'belgian horse': 162.6, 'tiger': 91.0, 'lion': 97.0, 'indian elephant': 280.0}
>>> 'tiger' in heights

True

>>> 'giraffe' in heights

False

>>> 91.0 in heights

False

>>> list(heights.keys())

['belgian horse', 'tiger', 'lion', 'indian elephant']
>>> sorted(heights.keys())

['belgian horse', 'indian elephant', 'lion', 'tiger']

>>> heights.values()
dict_values([162.6, 91.0, 97.0, 280.0])
>>> list(heights.values())

[97.0, 162.6, 91.0, 280.0]

¢ Details:

Two initializations; either would work.

Syntax is very much like the subscripting syntax for lists, except dictionary subscripting/indexing uses
keys instead of integers!

The keys, in this example, are animal species (or subspecies) names; the values are floats.

— The in method tests only for the presence of the key, like looking up a word in the dictionary without
checking its definition.

The keys are NOT ordered.

132 Chapter 29. Lecture 16 — Dictionaries, Part 1

CSCI-1100 Course Notes, Release

e Just as in sets, the implementation uses hashing of keys.

— Conceptually, sets are dictionaries without values.

29.6 Lecture Exercise 1

You will have five minutes to work on the first lecture exercise.

29.7 Back to Our IMDB Problem

¢ Even though our coverage of dictionaries has been brief, we already have enough tools to solve our problem
of counting movies.

* Once again we'll use the following as a starting point

imdb_file = input("Enter the name of the IMDB file ==> ").strip()
counts = dict()
for line in open(imdb_file, encoding = "IS0-8859-1"):

words = line.strip().split('[')

name = words[0].strip()

¢ The solution we give in class will output the counts for the first 100 individuals in alphabetical order. It will
be up to you as an exercise to find the most frequently occuring individual.

* We will impose an ordering on the output by sorting the keys.

o We'll test first on our smaller data set and then again later on our larger ones.

29.8 Key Types

¢ Thus far, the keys in our dictionary have been strings.
¢ Keys can be any “hashable” type — string, int, float, booleans.
- Lists, sets and other dictionaries can not be keys.
e Strings are by far the most common key type
* We will see an example of integers as the key type by the end of the Lecture 17 (next set of) notes.

* Float and boolean are general poor choices. Can you think why?

29.9 Value Types

¢ So far, the values in our dictionaries have been integers and floats.
¢ But, any type can be the values

boolean

- int

— float

string

29.6. Lecture Exercise 1 133

CSCI-1100 Course Notes, Release

list

tuple
- set

other dictionaries

* Here is an example using our IMDB code and a set:

>>> people = dict()

>>> people['Hanks, Tom'] = set()

>>> people['Hanks, Tom'].add('Big')

>>> people['Hanks, Tom'].add('Splash')

>>> people['Hanks, Tom'].add('Forest Gump')
>>> print(people['Hanks, Tom'])

{'Forest Gump', 'Big', 'Splash'}

* Here is another example where we store the continent and the population for a country instead of just the
population:

countries = dict()

countries.clear ()

countries['Algeria'] = (37100000, 'Africa')
countries['Canada'] = (34945200, 'North America')
countries['Uganda'] = (32939800, 'Africa')
(32696600, 'Africa')

countries['Morocco'] =
= (30894000, 'Africa')

countries['Sudan']

¢ We access the values in the entries using fwo consecutive subscripts. For example,

name = "Canada"
print("The population of is " format (name, countries[name] [0]))
print("It is in the continent of", countries[name][1])

29.10 Removing Values: Sets and Dictionaries

e Foraset:

- discard removes the specified element, and does nothing if it is not there

— remove removes the specified element, but fails (throwing an exception) if it is not there
e For a dictionary, it is the del function.

¢ For both sets and dictionaries, the clear method empties the container.

We will look at toy examples in class

29.11 Other Dictionary Methods

¢ The following dictionary methods are useful, but not so much as the ones we've discussed.
- get
— pop
— popitem

134 Chapter 29. Lecture 16 — Dictionaries, Part 1

CSCI-1100 Course Notes, Release

— update

» Use the help function in Python to figure out how to use them and to find other dictionary methods.

29.12 Summary of Dictionaries

* Associate “keys” with “values”

Feels like indexing, except we are using keys instead of integer indices.
* Makes counting and a number of other operations simple and fast.
¢ Keys can be any “hashable” value, usually strings, sometimes integers.

* Values can any type whatsoever.

29.13 Additional Practice

1. Write a function that takes the IMDB dictionary — which associates strings representing names with integers
representing the count of movies — and an integer representing a min_count, and removes all individuals
from the dictionary involved in fewer than min_count movies.

29.12. Summary of Dictionaries 135

CSCI-1100 Course Notes, Release

136 Chapter 29. Lecture 16 — Dictionaries, Part 1

	Lecture 1 — Introduction
	Lecture 2 — Python as a Calculator
	Lecture 2 — Exercises
	Lecture 3 — Python Strings
	Lecture 3 — Exercises
	Lecture 4 — Using functions and modules
	Lecture 4 — Exercises
	Lecture 5 — Python Functions
	Lecture 5 — Exercises
	Lecture 6 — Decisions
	Lecture 6 — Exercises
	Lecture 7 — Lists Part 1
	Lecture 7 — Exercises
	Lecture 8 — Tuples, Modules, Images
	Lecture 8 — Exercises
	Lecture 9 — While Loops
	Lecture 9 — Exercises
	Lecture 10 — Lists Part 2
	Lecture 10 — Exercises
	Lecture 11 — Decisions Part 2
	Lecture 11 — Exercises
	Lecture 12 — Controlling Loops
	Lecture 12 — Exercises
	Lecture 13 — Data from Files and Web Pages
	Lecture 13 — Exercises
	Lecture 14 — Problem Solving and Design, Part 1
	Lecture 15 — Sets
	Lecture 15 — Exercises
	Lecture 16 — Dictionaries, Part 1
	Lecture 16 — Exercises

