
CHAPTER

THIRTYNINE

LECTURE 21 — SORTING

39.1 Overview

• Sorting is a fundamental operation

• Provides good practice in implementing and testing small functions

• Leads to a better understanding of algorithm efficiency

• Allows us to consider the fundamental notion of a merge of two sorted sequences.

• During testing, we will see an example of the important notion of passing functions as arguments.

39.2 Algorithms to Study

• Insertion sort

• Merge sort

– This is our primary focus.

• Python’s built in sort

39.3 Insertion Sort

• Idea:

– If we already have a sorted list and we want to insert a new value, we can shift values one location higher
until we find the proper location for the new value

– Insert the new value

– Start with a just a list of length 1 and repeat until all values have been inserted

• Algorithm

for each index i in the list, starting at 1 do
Save the value stored at location i in variable x
Initialize j at location i-1
while j is non-negative and the location to insert x has not been found do

Shift the value at location j up to location j+1
Decrement j

Insert the value stored in x in location j+1

171



CSCI-1100 Course Notes, Release

• Code (in-class exercise):

def ins_sort(v):

39.4 Steps to Testing

1. Re-read and mentally simulate

2. Insert print statements and/or view with debugger to see what it is actually doing.

3. Run on “test cases” that capture challenging conditions:

• Empty list

• Singleton list

• List of repeated values

• List where the largest value is at the beginning or the smallest value is at the end.

39.5 Rough Analysis of Time Required

• For any particular value of i in the outer for loop, there can be up to i-1 comparisons/shifts.

– When i==1 this is not much, but

– When i==N-1, this is a lot.

• Adding across the different values of i, this results in at most (roughly) N 2/2 comparisons.

• We write this as O(N 2) because (informally) the number of comparisons done is proportional to N 2.

39.6 Experimental Analysis

• The code lec21_test_sort.py posted on the Piazza site, and attached to the end of these notes, will be
used to do timing experiments on all the sorts we write.

• Makes use of the random module

• Includes two main functions:

– run_and_time

– generate_local_perm

We will discuss each of these in turn.

• The sorting functions themselves are functions in the module sort

• Notice that the sorting function is passed as an argument to run_and_time:

– First time that we have passed a function as an argument to another function!

• We will start with experiments to analyze selection sort (see textbook) and insertion sort.

172 Chapter 39. Lecture 21 — Sorting



CSCI-1100 Course Notes, Release

39.7 Breaking the N-Squared Barrier

• The fundamental problem with both selection sort (discussed in the textbook, but not in these notes) and
insertion sort:

– We need to do up to N comparisons by scanning through the list to find the proper location of the next
value in the sorted list.

– For insertion sort, we could use binary search to find the insertion location, but we would still have up
to N shifts of values.

• Do better than selection sort and insertion sort by using algorithms that don’t scan the entire list to assign
one value.

• Examples

– Quick sort

– Heap sort

– Merge sort

• We’ll study merge sort, in part because it is the easiest of these to understand and in part because of the
importance of the idea of a merge.

39.8 Merging Two Sorted Lists

• Given two lists that are each already sorted, our problem is to generate a new sorted list containing all of the
items from both lists.

• For example,

L1 = [ 9, 12, 17, 25 ]
L2 = [ 3, 5, 11, 13, 16 ]

must be merged into a new list containing

[ 3, 5, 9, 11, 12, 13, 16, 17, 25 ]

• Idea:

– Since both lists are sorted, the first item in the new list must be the first item in one of the lists!

– If we “remove” the smallest item (3 in L1 in this case), the next item will again be the first non-copied
item in one of the two lists!

– We repeat this process until one of the lists has no more items to copy.

– Then, copy the remainder of the other list to the back of our new list.

• We don’t actually remove the items from L1 or L2. Instead we keep an index to the next location of L1 and L2
that has not yet been copied.

• We’ll write the code in class, starting from here

def merge(L1, L2):
i1 = 0
i2 = 0
L = []

39.7. Breaking the N-Squared Barrier 173



CSCI-1100 Course Notes, Release

return L

• Studying the solution:

1. Write the values of the index variables, i1 and i2, each time through the loop for lists L1 and L2 above.

2. What are the values of i1 and i2 when the loop terminates?

39.9 Merge Sort

• Key observation: all lists of length 1 are sorted

• Therefore, for a list of length N that is to be sorted:

– Create N lists of length 1 from the values in the list

– Start to merge these “singleton” lists in pairs to create longer, sorted lists.

– Repeat on pairs of longer lists in succession

• Requires

– Keeping a list of sorted sublists, initialized with each singleton list

– Rather than deleting the sorted sublists, just keep track of which we need to work on.

• Code (in class):

def merge_sort(v):
if len(v) <= 1:

return

39.10 Analysis of Merge Sort

• Check for correctness

• We’ll give an informal analysis explaining why there are only O(N log N ) comparisons.

• Experimental timings

• Can you think of ways to improve our implementation of the merge sort idea?

174 Chapter 39. Lecture 21 — Sorting



CSCI-1100 Course Notes, Release

39.11 Final Comparison Across All Sorts

• Selection sort and insertion sort are dramatically slower than merge sort, which in turn is dramatically slower
than Python’s built-in sort, a highly optimized, C language implementation of merge sort.

• Shows

– the difference between O(N 2) sorting and O(N l og N ) sorting, and

– the difference between a straight-forward Python implementation and a careful, optimized implemen-
tation of the same algorithm.

Both of these are important!

• Final question: what happens when values are “almost” sorted?

– Experimentally, we can explore this using the generate_local_perm function in test_sort.py.

– Insertion sort becomes much faster, far outstripping selection sort. Why?

39.12 Practice Questions

1. For our insertion sort code, show the contents of the following list after each iteration of the outer for loop

v = [ 12, 4, 11, 2, 6, 18, 9 ]

While you can and should use the implementation to test your answers, you should start by manually gen-
erating the answers on your own.

2. Show the contents of the lists list at the end of the merge_sort implementation developed in class when
it is called with

v = [ 17, 15, 29, 66, 31, 19, 9, 33 ].

3. Consider the following function

def extract( comp, v ):
x = v[0]
for i in range(1,len(v)):

if comp(v[i],x):
x = v[i]

return x

Note that comp is a function that has been passed to extract.

(a) Write a function called compare_lower(a,b) such that if L is a list then the call

extract(compare_lower,L)

returns the smallest value in L.

(b) Write a function called compare_upper(a,b) such that if L is a list then the call

extract(compare_upper,L)

returns the largest value in L.

4. Write a version of merge that does all of the work inside the while loop and does not use the extend. This is
a good test of your logic skills.

39.11. Final Comparison Across All Sorts 175



CSCI-1100 Course Notes, Release

5. Based on your previous solution write a function to merge three sorted lists. This is an even greater challenge
to your logic skills.

Note that when it comes to the Final, you will not be required to have memorized the code of the sorting functions,
but you should know the algorithms!

Sort Testing Code

'''
Testing code for Computer Science 1, Lecture 21 on sorting. This
assumes that the sort functions are all in file lec21_sorts.py, each taking
one list as its only argument, and that their names are sel_sort
ins_sort merge_sort

All tests are based on random permutations of integers.

. In most of our tests, these permutations are completely random,
meaning that a value is equally likely to end up anywhere in the
list.

. In the final test we will explore the implications of working
with lists that are "almost sorted" by only moving values a small
distance from the correct location. You can see that insertion sort
is very fast in this case by removing the # char in front of
generate_local_perm

'''

import lec21_sorts as sorts
import time
import random

def run_and_time(name, sort_fcn, v, known_v):
'''
Run the function passed as sort_fcn, timing its performance and
double-checking if it correct. The correctness check is probably
not necessary.
'''
print("Testing " + name)
t0 = time.time()
sort_fcn(v)
t1 = time.time()
print("Time: {:.4f} seconds".format(t1-t0))
# print("Is correct?", v==known_v
print()

def generate_local_perm(v,max_shift):
'''
This function modifies a list so values are only a small amount
out of order. Each one Generate a local permutation by randomly moving each
value up to max_shift locations in the list.
'''
for i in range(len(v)):

min_i = max(0,i-max_shift)
max_i = min(len(v)-1, i+max_shift)
new_i = random.randint( min_i, max_i )
v[i], v[new_i] = v[new_i], v[i]

176 Chapter 39. Lecture 21 — Sorting



CSCI-1100 Course Notes, Release

####################################################

if __name__ == '__main__':
n = int(raw_input("Enter the number of values ==> "))
print("----------")
print("Running on {:d} values".format(n))
print("----------")

v = range(n)
v1 = v[:]
random.shuffle(v1)
# generate_local_perm(v1, 10)
v2 = v1[:]
v3 = v1[:]
v4 = v1[:]

run_and_time("merge sort", sorts.merge_sort, v3, v ) # passing functions as an arg to a fcn
run_and_time("python sort", list.sort, v4, v )
run_and_time("selection sort", sorts.sel_sort, v1, v )
run_and_time("insertion sort", sorts.ins_sort, v2, v )

39.12. Practice Questions 177



CSCI-1100 Course Notes, Release

178 Chapter 39. Lecture 21 — Sorting


	Lecture 1 — Introduction
	Lecture 2 — Python as a Calculator
	Lecture 2 — Exercises
	Lecture 3 — Python Strings
	Lecture 3 — Exercises
	Lecture 4 — Using functions and modules
	Lecture 4 — Exercises
	Lecture 5 — Python Functions
	Lecture 5 — Exercises
	Lecture 6 — Decisions
	Lecture 6 — Exercises
	Lecture 7 — Lists Part 1
	Lecture 7 — Exercises
	Lecture 8 — Tuples, Modules, Images
	Lecture 8 — Exercises
	Lecture 9 — While Loops
	Lecture 9 — Exercises
	Lecture 10 — Lists Part 2
	Lecture 10 — Exercises
	Lecture 11 — Decisions Part 2
	Lecture 11 — Exercises
	Lecture 12 — Controlling Loops
	Lecture 12 — Exercises
	Lecture 13 — Data from Files and Web Pages
	Lecture 13 — Exercises
	Lecture 14 — Problem Solving and Design, Part 1
	Lecture 15 — Sets
	Lecture 15 — Exercises
	Lecture 16 — Dictionaries, Part 1
	Lecture 16 — Exercises
	Lecture 17 — Dictionaries, Part 2
	Lecture 17 — Exercises
	Lecture 18 — Classes, Part 1
	Lecture 18 — Exercises
	Lecture 19 — Classes, Part 2
	Lecture 19 — Exercises
	Lecture 20 — Searching
	Lecture 20 — Exercises
	Lecture 21 — Sorting
	Lecture 21 — Exercises
	Lecture 22 — TKInter
	Lecture 22 — Exercises

