
CHAPTER

FORTYTHREE

LECTURE 23 — RECURSION

43.1 Overview

• When a function calls itself, it is known as a recursive function.

• Use of the function call stack allows Python to handle recursive functions correctly.

• Examples include factorial, Fibonacci, greatest common divisor, flattening a list of lists, and mergesort.

• We’ll think about how to hand-simulate a recursive function as well as rules for writing recursive functions.

43.2 Our First Example

• Consider the following Python function.

def blast(n):
if n > 0:

print(n)
blast(n-1)

else:
print("Blast off!")

• What is the the output from the call?

blast(5)

43.3 Python’s Call Stack Mechanism

The following mechanism helps us understand what is happening:

• Each time the code makes a function call, Python puts information on the “call stack”, including

– All values of parameters and local variables

– The location in the code where the function call is being made.

• Python then makes the function call, switching execution to the start of the called function.

• This function in turn can make additional (potentially recursive) function calls, adding information to the
top of the stack each time.

• When a function ends, Python looks at the top of the stack, and

191



CSCI-1100 Course Notes, Release

– restores the values of the local variables and parameters of the most recent calling function,

– removes this information from the top of the stack,

– inserts the returned value of the called function (if any) in the appropriate location of the calling func-
tion’s code, and

– continues execution from the location where the call was made.

43.4 Practice Problems to Illustrate This

What are the outputs of the following?

def rp1( L, i ):
if i < len(L):

print(L[i], end=' ')
rp1( L, i+1 )

else:
print()

def rp2( L, i ):
if i < len(L):

rp2( L, i+1 )
print(L[i], end=' ')

else:
print()

L = [ 2, 3, 5, 7, 11 ]
rp1(L,0)
rp2(L,0)

Note that the entirety of list L is not copied to the top of the stack. Instead, a reference (an alias) to L is placed on
the stack.

43.5 Factorial

• The factorial function is

n! = n(n °1)(n °2) · · ·1

and

0! = 1

• This is an imprecise definition because the ... is not formally defined.

• Writing this recursively helps to clear it up:

n! = n · (n °1)!

and

0! = 1

The factorial is now defined in terms of itself, but on a smaller number!

192 Chapter 43. Lecture 23 — Recursion



CSCI-1100 Course Notes, Release

• Note how this definition now has a recursive part and a non-recursive part:

– The non-recursive part is called the base case. There must be at least one base case in every recursive
function definition.

43.6 Exploring Factorial

We will:

• Write a recursive Python function to implement n!.

• Hand-simulate the call stack for n = 4.

We’ll add output code to the implementation to help visualize the recursive calls in a different way.

43.7 Guidelines for Writing Recursive Functions

1. Define the problem you are trying to solve in terms of smaller / simpler instances of the problem. This
includes

(a) What needs to happen before making a recursive call?

(b) What recursive call(s) must be made?

(c) What needs to happen to combine or generate results after the recursive call (or calls) ends?

2. Define the base case or cases.

3. Make sure the code is proceeding toward the base case in every step.

43.8 Fibonacci

• The Fibonacci sequence starts with the values 0 and 1.

• Each new value in the sequence is obtained by adding the two previous values, producing

0,1,1,2,3,5,8,13,21,34,55, . . .

• Recursively, the nth value, fn , of the sequence is defined as

fn = fn°1 + fn°2

• This leads naturally to a recursive function...

43.9 Dangers of Recursion

• Some recursive function implementations contain wasteful repeated computation.

• Recursive function calls — like any function calls — typically involve hidden overhead costs.

• Often, therefore, a recursive function can (and should) be replaced with a non-recursive, iterative function
that is significantly more efficient.

• This is easy to do for both Factorial and Fibonacci, as we will see in class.

43.6. Exploring Factorial 193



CSCI-1100 Course Notes, Release

43.10 Why, Then, Do We Study Recursion?

• Many of our definitions and even, our logical structures (such as lists), are formalized using recursion.

• Sometimes recursive functions are the first ones we come up with and the easiest to write (at least after you
are comfortable with recursion).

– Only later do we write non-recursive versions.

• Sometimes on harder problems it is difficult to even write non-recursive functions! The list flattening prob-
lem below is one such example.

43.11 Advanced Examples

We’ll spend the rest of class on three more advanced examples:

1. Recursive geometric shapes: the Sierpinski triangle

2. Flattening a nested list

3. A recursive version of merge sort

43.12 Recursive Geometric Shapes

• Fractals are often defined using recursion. How do we draw a Sierpinski triangle like the one shown below?

• We will look at this example in class and attempt to define the recursion.

• To aid us, we’ll look at a Tkinter Python program that implements the drawing of the Sierpinski triangle.

194 Chapter 43. Lecture 23 — Recursion



CSCI-1100 Course Notes, Release

43.13 Flattening a Nested List

• Suppose we want to take a list such as

v = [[1,5], 6, [[2]], [3, [7, 8, [9,10], [11,12] ]]]

and “flatten” it, converting it to just a list of values with no sublists.

v = [ 1, 5, 6, 2, 3, 7, 8, 9, 10, 11, 12 ]

• This is challenging because we don’t know when we write a function to solve this problem how “deep” the
nesting of sublists goes. The solution should handle arbitrary depths:

– Many, many data structures (containers) in computer science have this type of nested / recursive struc-
ture: an entry in a list may be another list....

• To solve this problem we will also need to know how to recognize when an entry in a list is another list. For
this we need to use the type function in Python. The following example should make this clear:

>>> v = [ 'a', 'b', 'c']
>>> x = 12
>>> type(v) == list
True
>>> type(v[0]) == list
False
>>> type(x) == int
True

• Now we are ready to solve the “flattening” problem. We’ll look at two different approaches. In both, the key
will be to distinguish between handling elements that are lists (and therefore must be flattened recursively)
and elements that are not lists. We’ll start from...

def flatten(L):

if __name__ == "__main__":
v = [[1,5], 6, [[2]], [3, [7, 8, [9,10], [11,12] ]]]
print(v)
print(flatten(v))

43.14 Final Example: Merge Sort

• The fundamental idea of merge sort is recursive:

– Any list of length 1 is sorted

– Otherwise:

* Split the list in half

* Recursively sort each half

43.13. Flattening a Nested List 195



CSCI-1100 Course Notes, Release

* Merge the resulting sorted halves

• We repeat our use of the merge function from Lecture 20:

def merge(L1,L2):
i1 = 0
i2 = 0
L = []
while i1<len(L1) and i2<len(L2):

if L1[i1] < L2[i2]:
L.append(L1[i1])
i1 += 1

else:
L.append(L2[i2])
i2 += 1

L.extend(L1[i1:])
L.extend(L2[i2:])
return L

• Using this, we will write the main merge_sort function in class.

def merge_sort(L):

– The solution will be posted on-line.

– We will also see how a minor mistake can cause the recursion to go into an infinite loop.

• Comparing what we write to our earlier non-recursive version of merge sort shows that the primary job of
the recursion is to organize the merging process!

43.15 Summary

• Functions that call themselves are known as “recursive functions”

• Use of a function call stack allows Python to handle recursive functions correctly.

• Many structures and functions important to computer science are defined recursively.

• Fundamentally, recurision is about defining a problem solution as a function of the solution to a sim-
pler/shorter/smaller version of the problem.

• A basis case (or cases) is (are) always needed to make a recursion function succeed.

• Infinite recursion is avoided by ensuring that progress is made toward the basis case or cases in every recur-
sive call.

• While many recursive functions are easily rewritten to remove the recursion, some advanced problems are
difficult to solve without recursion.

43.16 Additional Practice Exercises

1. Euclid’s algorithm for finding the greatest common divisor is one of the oldest known algorithms. If a and b
are positive integers, with a ∏ b, then let r be the remainder of dividing a by b. If r == 0, then b is the GCD
of the two integers. Otherwise, the GCD of a and b equals the GCD of b and r . Here is the Python code:

196 Chapter 43. Lecture 23 — Recursion



CSCI-1100 Course Notes, Release

def gcd(a,b):
if a < b:

a,b = b,a

r = a % b
if r==0:

return b
else:

return gcd(b,r)

(a) What is the output of

print(gcd(36,24))
print(gcd(84,65))
print(gcd(84,66))

(b) Why do we know that gcd is proceeding toward the base case (as required by our “rules” of writing
recursive functions)?

2. Specify the recursive calls and return values from our merge_sort implementation for the list

L = [ 15, 81, 32, 16, 8, 91, 12 ]

43.16. Additional Practice Exercises 197



CSCI-1100 Course Notes, Release

198 Chapter 43. Lecture 23 — Recursion


	Lecture 1 — Introduction
	Lecture 2 — Python as a Calculator
	Lecture 2 — Exercises
	Lecture 3 — Python Strings
	Lecture 3 — Exercises
	Lecture 4 — Using functions and modules
	Lecture 4 — Exercises
	Lecture 5 — Python Functions
	Lecture 5 — Exercises
	Lecture 6 — Decisions
	Lecture 6 — Exercises
	Lecture 7 — Lists Part 1
	Lecture 7 — Exercises
	Lecture 8 — Tuples, Modules, Images
	Lecture 8 — Exercises
	Lecture 9 — While Loops
	Lecture 9 — Exercises
	Lecture 10 — Lists Part 2
	Lecture 10 — Exercises
	Lecture 11 — Decisions Part 2
	Lecture 11 — Exercises
	Lecture 12 — Controlling Loops
	Lecture 12 — Exercises
	Lecture 13 — Data from Files and Web Pages
	Lecture 13 — Exercises
	Lecture 14 — Problem Solving and Design, Part 1
	Lecture 15 — Sets
	Lecture 15 — Exercises
	Lecture 16 — Dictionaries, Part 1
	Lecture 16 — Exercises
	Lecture 17 — Dictionaries, Part 2
	Lecture 17 — Exercises
	Lecture 18 — Classes, Part 1
	Lecture 18 — Exercises
	Lecture 19 — Classes, Part 2
	Lecture 19 — Exercises
	Lecture 20 — Searching
	Lecture 20 — Exercises
	Lecture 21 — Sorting
	Lecture 21 — Exercises
	Lecture 22 — TKInter
	Lecture 22 — Exercises
	Lecture 23 — Recursion
	Lecture 23 — Exercises
	Lecture 24 — Advanced Python Topics and Functional Programming
	Lecture 24 — Exercises

