The importance of reading

• Reading is essential for your success as a researcher
 • Identifies research directions and trends
 • Clarifies your research community
 • Prevents duplicated and wasted efforts
• Must identify WHAT papers to read
• Should know WHY to read them
• And HOW to read them effectively
• Feel no shame in asking questions
CLASSES of papers

• Technical Papers
 • Novel research contributions
 • Define and investigate problem, documents conclusions
 • Results can be theory, or systems/engineer-oriented, or both
 • Main type of paper you will be reading and producing in grad school

• Survey Papers
 • Summarize results and directions in a particular research field
 • Attempt to impose high-level structure on research literature
 • Can be useful when starting in a new research direction

• Vision Papers
 • Advocate for new directions on old problems or looking at new problems
TYPES of papers

• Seminal
 • Foundational results, opened new research direction
 • Can be relatively old (70s, 80s)

• Influential
 • Highly cited, novel perspective and directions in field
 • Could be seminal or not
 • Considered required reading in your field

• Expository
 • Papers your advisor recommends reading to understand your field
 • Excellent problem descriptions and motivation
 • Detailed related works sections
 • May or may not be influential

• Relevant
 • Related to your specific research
VENUES for papers

• Conference Papers
 • A primary publication method in many subfields of CS
 • Fast moving: less than a year between submission and publication
 • Relate to the topic of the conference, published in proceedings
 • Peer-reviewed and voted on for acceptance
 • Usual short, around 8 pages
 • Accompanied by talks and/or posters

• Workshop Papers
 • Preliminary versions of conference papers
 • Usually short
 • Also peer-reviewed, lower bar for acceptance
 • May or may not be published in workshop proceedings
VENUES for papers

• Journal Papers
 • Relate to the topic of the journal
 • Usually longer than conference papers (exception: Letters type journals)
 • Stronger peer-review process, multiple rounds of submission
 • Slower-moving: usually 6+ months to a couple years from submission to publication (exception: Letters type journals)
 • In CS, often extended versions of conference papers
 • Surprisingly, sometimes less selective than conferences
VENUES for papers

• Preprints and Technical Reports
 • Not peer-reviewed; be extra careful in taking at face value
 • Serve as way to disseminate results quickly
 • Posted on author’s webpages, preprint servers (e.g. arXiv)
 • Preprint: pre-publication version of a peer-reviewed paper
 • TRs: may or may not be in process of peer-review
HOW to read effectively

• Reading is like eating
 • We need to do it to get sustenance (knowledge)
 • There are some shared commonalities, but everyone finds their own way to chew and digest
• Know WHEN and WHY to read a paper
• ORGANIZE yourself
• Read SMART
• DOCUMENT your take-aways
HOW to read effectively

• In a nutshell:
 1. **Skim** for the main ideas and results
 2. **Re-read** to get the gist of the arguments/proofs and experiments
 3. **Re-read** critically, challenging the claims
 4. **Summarize** to ensure you understand the contributions and main ideas
WHY to read a given paper

• You find it interesting
• It was recommended to you (advisor or colleague)
• To learn new tools or methods relevant to your research
• As background or to cite for your research
• As background for reading another paper
• To prepare for a conference or meeting
• To review for a conference or journal
• Assigned reading in a course, or reading group
WHEN to read a given paper

• When writing your own paper
 • Look for related results and relevant tools
 • Give credit where it is due (related works)
 • Position your paper and explain its contribution
 • Survey the field, as a service to the reader (and bump your paper cites up)

• Knowledge Maintenance
 • Know what is going on in your field (preprints, workshops, conferences)
 • Find interesting problems to work on

• Pre-conference
 • Plan which talks you will attend, and read those papers
 • Read before the talk, before the poster session, before author leaves
HOW to find papers to read

• Ask your advisor
• Related works section of relevant papers
• Check forward citations of relevant papers (Google Scholar, ...)
• Follow preprint servers (arXiv, ...)
• Follow journals’ RSS feeds of recent articles
• Check conference proceedings
• Check researchers’ webpages for preprints
• It helps to know your research community (conferences, individual researchers, relevant journals)—ask your advisor!
PLANNING to read a paper

• Time management is major:
 • Length of paper:
 • journal papers and TRs (a day or two)
 • conference papers (several hours)
 • Purpose in reading affects time spent:
 • Knowing what’s in a paper (skim)
 • Understanding the main ideas (read notation and main results, experiments)
 • Understanding the details (read everything closely)
 • Checking the details (do the calculus)
CAVEATS in reading: peer review

• Conference reviewing is problematic
 • Single-blind vs double-blind leading to biases of all kinds
 • Very stochastic!
 • Quick turn arounds on reviewing
 • Sometimes poor selection of reviewers
 • Reviewers fatigued by multiple papers at once

• Journal reviewing also has issues
 • Scrutiny inverse with paper length

• Preprints are not peer-reviewed at all
CAVEATS in reading: credulity

• Be aware of your own biases
 • Belief that publication means correctness
 • Belief that authors know how to position their work
 • Belief that authors mention all related works
 • Trust that experiments are meaningful (choice of metrics, datasets, etc.)
 • Trust that theory is meaningful

• Challenge your assumptions and biases. Do not depend on peer review. Research papers are not textbooks.
CAVEATS in reading: writing quality

- Sometimes difficulty in understanding is not solely due to you
- Good researchers are not necessarily good writers
- More effort is spend on polishing some papers than others

To ameliorate:
- Ask your advisor
- Identify quality expository papers in your field, start with them
- Familiarize yourself with notation and conventions of your field, folkloric results
- Contact the corresponding author
BEFORE reading a paper

• Check the publication details
 • Publication venue, date
 • Is there a journal version of this conference/workshop/TR?
 • Is this the authoritative version?
 • Who are the authors? Identify professors, post-docs, students, affiliations
 • Who is the corresponding author for questions?
 • Check citation count: how influential is this work?

• Read the abstract
 • What do the authors think is their contribution?
 • Does this still seem worth reading?
BEFORE reading a paper

• Skim:
 • Get very broad outline of paper contents
 • Understand how it relates to your research interests

• Decide whether to continue reading
 • Is this relevant to you?
 • Is the quality of the paper up to par?
 • Do you need to read other background material first?
Multi-pass Reading

• Recall purpose in reading:
 • Knowing what’s in a paper
 • Understanding the main ideas
 • Understanding the details
 • Checking the details

• First, skim:
 • Understand positioning
 • Understand main results
 • Understand meaning of experiments
 • Formulate your take-aways from the paper
Multi-pass Reading

• Second pass, go deeper:
 • Identify the main tools and ideas used. Which are new?
 • Any flaws or omissions in methodology or theory?
 • Look for simple implications of complex or difficult to parse claims: are they reasonable? (e.g. non-obvious exponential dependencies)

• Third pass, challenge:
 • Are the technical details correct?
 • Can the results be obtained more simply?
 • If code is available, were the experiments done as described?
Anatomy of a Research Paper

- Introduction
- Related Works
- Notation
- Main Results and/or Algorithms
- Experimental Results
- Conclusions
- Bibliography
- Appendices: Theory, Supplemental Experiments
Reading the Introduction and Related Works

• **Purpose of the Introduction:**
 • Describe the problem being addressed
 • Motivate interest in this problem
 • Position the paper’s results in the broader area of research
 • Explain the importance of the results

• **Purpose of Related Works:**
 • Give fair comparison to similar work
 • Provide reader with context to judge results

• **You judge:**
 • How interesting/important is this problem?
 • How novel and reasonable are the paper’s results?
 • What related works would I benefit from reading?
 • Keep in mind the authors’ claims as you read the rest of the paper
Reading the Main Results

- Describes solution to the problems raised in the introduction
 - Algorithms
 - Software, Hardware
 - Novel theoretical understanding

- You judge:
 - In what sense is the problem solved? Partially? Completely?
 - Is the solution fully and unambiguously described?
 - How efficient is the solution?
 - How meaningful are these results?
 - Do the results match the claims made in the introduction and abstract?
Reading the Main Results

• Decide *ahead of time* on your criteria for measuring quality of the solution
 • What would a reasonable solution look like or guarantee?
 • Scalability?
 • Robustness?

• If theory, look at simplified models (e.g. restate tensor results as matrix results)
Reading the Experimental Results

• Provides experimental validation of results
 • Describes experimental design and setup

• You judge:
 • Are the relevant questions answered? (depends partly on authors’ claims)
 • Are the baselines appropriate (extant?), and strong enough?
 • Are the metrics meaningful and sufficient for the problem?
 • Are datasets reasonably challenging, representative, and illustrative? Are the results statistically meaningful?
 • Are these experiments in keeping with standard practice?
 • Do the results support the claims made in the introduction and abstract?
Reading the Experimental Results

• Decide *ahead of time* on your criteria for judging quality of the experiments
 • Avoids bias towards agreeing with authors’ choices
• Example considerations (depends on your area):
 • Hyperparameter selection
 • Hidden costs (model selection)
 • Bias in data selection
 • Red flag: no drawbacks at all, the new method is always the best
 • Accuracy-vs-time tradeoff
Reading the Appendices

• Expands on body of the paper with further details
 • Usually in theory papers, contains the technical proof details
 • In empirical papers, contains further experimental validation

• You judge:
 • Given why I’m reading this paper, is this relevant material?
 • How does this reflect or supplement the main claims of the paper?

• For theory papers (read the appendices!):
 • Understand how the parts hang together first before reading in detail
 • Identify the crucial insightful results vs the mechanical lemmata
 • Work through the proofs yourself, try to reorganize and simplify
Reading the Conclusion

• Summarizes the main points of the paper
• Looks forward to future directions
• You judge:
 • Do the conclusions match/repeat the claims made earlier?
 • Do you think the research directions are worth pursuing?
 • Are there more valuable contributions that you feel should be listed?
AFTER reading

- Are you confident in your understanding?
 - Read it again
 - See related works for different perspectives
 - Talk to your advisor

- Correctness of the paper
 - Talk to your advisor
 - Contact the corresponding author

- Big picture
 - What was the value of this paper for your research?
 - What new tools or approaches did you learn?
 - Where will you go from here: more reading? Work on this problem?
ORGANIZING reading

• Keep track of papers you want to read, *and why*
 • Bibliography tools: BibTeX, ...
 • Paper managers: Mendeley, Papers, ...
 • Annotated pdf readers

• Keep track of papers you read, *and your thoughts*
 • Judgements and questions
 • Ideas for related research directions
 • Related works to follow up on
ORGANIZING reading

• Time management:
 • Schedule regular times for reading
 • Don’t linger on tough spots, skip and revisit

• Reading order:
 • First, read easily digestible papers
 • Next, influential papers
 • Next, relevant papers
 • Skim: seminal papers. Especially if they are old
Some closing thoughts

• Read as if the authors are friends asking for honest feedback
• Active reading w/ pen and paper (or tablet and stylus)
• Challenge everything: do I know how to do this better, make this more concise, transparent?
• Post-mortem: can I teach the ideas in this paper to someone else w/o jumping into equations?
Even more closing thoughts

• Try to position paper techniques and results in your personal knowledge graph
 • Tie in with what you already know
 • Make it more approachable and see as something you could produce
 • Own the knowledge in what you read
Questions?