Distributed Graph Processing - 3

Lecture 14

CSCI 4974/6971

24 Oct 2016
Today’s Biz

1. Reminders
2. Review
3. Distributed Graph Processing
Reminders

- Project Update Presentation: In class November 3rd
- Assignment 4: due date TBD (early November)
 - Setting up and running on CCI clusters
- Assignment 5: due date TBD (before Thanksgiving break)
- Assignment 6: due date TBD (early December)
- Office hours: Tuesday & Wednesday 14:00-16:00 Lally 317
 - Not available this Wednesday Oct 26
 - Or email me for other availability
Today’s Biz

1. Reminders

2. **Review**

3. Distributed Graph Processing
Quick Review

Distributed Graph Processing

1. Can’t store full graph on every node
2. Efficiently store local information - owned vertices / ghost vertices
 - Arrays for days - hashing is slow, not memory optimal
 - Relabel vertex identifiers
3. Vertex block, edge block, random, other partitioning strategies
Quick Review

Data Size Description

<table>
<thead>
<tr>
<th>Data</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_global</td>
<td>1</td>
<td>Global vertex count</td>
</tr>
<tr>
<td>m_global</td>
<td>1</td>
<td>Global edge count</td>
</tr>
<tr>
<td>n_local</td>
<td>1</td>
<td>Task-local vertex count</td>
</tr>
<tr>
<td>n_ghost</td>
<td>1</td>
<td>Ghost vertex count</td>
</tr>
<tr>
<td>m_local_out</td>
<td>1</td>
<td>Task-local out-edges count</td>
</tr>
<tr>
<td>m_local_in</td>
<td>1</td>
<td>Task-local in-edges count</td>
</tr>
</tbody>
</table>

out_edges	m_out	Array of out-edges
out_offsets	n_loc	Start indices for local out-edges
in_edges	m_in	Array of in-edges
in_offsets	n_loc	Start indices for local in-edges

map	n_loc+n_gst	Global to local id hash table
local_unmap	n_loc	Array for local to global id conv.
ghost_unmap	n_gst	Array for local to global id conv.
tasks	n_gst	Array storing owner of ghost vertices
Quick Review

Partitioning strategies

1. Random - high balance but high communication
2. Block - vertex balance, poor edge balance, moderate communication
3. Explicit - good balance, low communication, but cost to compute
Today’s Biz

1. Reminders
2. Review
3. Distributed Graph Processing
Distributed Processing
Blank code and data available on website
(Lecture 15)

www.cs.rpi.edu/~slotag/classes/FA16/index.html