11.1 Directed Connectivity

So far, we've talked about connectivity for undirected graphs in terms of cut vertices and cut edges. For digraphs, we have the concepts of **strong connectivity** and **weak connectivity**. The definition of strong connectivity is similar to connectivity in undirected graphs: for any u, v in a strongly connected component, there exists a directed u, v-path from u to v. Weak connectivity of a directed graph is equivalent to connectivity of its underlying graph, where the **underlying graph** of a digraph is the undirected representation created by removing directionality from the directed edges. You can think of it as the opposite of an orientation.

11.2 Vertex Connectivity

We're going to now somewhat generalize the concept of connectedness for undirected graphs in terms of network robustness. Essentially, given a graph, we may want to answer the question of how many vertices or edges must be removed in order to disconnect the graph; i.e., break it up into multiple components.

Formally, for a connected graph G, a set of vertices $S \subseteq V(G)$ is a **separating set** if subgraph G-S has more than one component or is only a single vertex. The set S is also called a **vertex separator** or a **vertex cut**. The **connectivity** of G, $\kappa(G)$, is the minimum size of any $S \subseteq V(G)$ such that G-S is disconnected or has a single vertex; such an S would be called a **minimum separator**. We say that G is k-connected if $\kappa(G) \geq k$.

11.3 Edge Connectivity

We have similar concepts for edges. For a connected graph G, a set of edges $F \subseteq E(G)$ is a **disconnecting set** if G - F has more than one component. If G - F has two components, F is also called an **edge cut**. The **edge-connectivity** if G, $\kappa'(G)$, is the minimum size of any $F \subseteq E(G)$ such that G - F is disconnected; such an F would be called a **minimum cut**. A **bond** is a *minimal* non-empty edge cut; note that a bond is not necessarily a minimum cut. We say that G is k-edge-connected if $\kappa'(G) \ge k$. In a couple classes, we'll talk about how one might find a minimum cut in an arbitrary graph.

For a simple graph, we can show that $\kappa(G) \leq \kappa'(G) \leq \delta(G)$.