
10.1 Matching

A matching M in a graph G is a set of non-loop edges with no shared endpoints. Vertices
incident to M are saturated; vertices not incident to M are unsaturated. A perfect
matching is a matching that saturates all v ∈ V (G). A maximal matching is a
matching that can’t be extended with the addition of an edge. A maximum matching
is a matching that is the maximum size over all possible matchings on G.

Given a matching M on G, an M-alternating path is a path that alternates between
edges from G in M and edges not in M . An M -alternating path whose endpoint vertices
are both unsaturated by M is an M-augmenting path. Berge’s Theorem states that
a matching M of G is a maximum matching if and only if G has no M -augmenting path.

The symmetric difference between two graphs G and H, written as G∆H, is the
subgraph of G ∪H whose edges are the edges that appear in only one of G and H. The
symmetric difference between two matchings contains either paths or cycles. We can use
this idea of symmetric difference to prove Berge’s Theorem.

Hall’s Theorem states that an X, Y -bipartite graph G has a matching that saturates
X if and only if |N(S)| ≥ |S| for all possible S ⊆ X. Hall’s Condition implies ∀S ⊆
X, |N(S)| ≥ |S| for X to be saturated. We can therefore show that a bipartite graph has
no matching saturating X if we identify a subset S ⊆ X where |N(S)| < |S|.

We can use Hall’s theorem to show that all k-regular bipartite graphs have a perfect
matching.

10.2 Maximum Bipartite Matching

In unweighted bipartite graphs, we can iteratively increase the size of an initial matching
M by finding augmenting paths. If an augmenting path can’t be found, we know via
Berge’s Theorem that we have a maximum match. The Augmenting Path Algo-
rithm is below. For unweighted shortest paths, we can simply use breadth-first search.

procedure MatchBipartite(X, Y -bigraph G)
M ← ∅ . M initially empty
do

P ← AugPathAlg(G,M) . New augmented path found with M,G
M ←M∆P . Symmetric difference between M,P

while P 6= ∅
return M

As we’ll see next class, things get a little trickier when we allow odd cycles as in general
graphs. We would need to modify our algorithm to account for them.

25

procedure AugPathAlg(X, Y -bigraph G and matching M = (VM , EM))
G′ ← G
Orient G′ : ∀e ∈ EM : e(xi, yj) = e(yj → xi);∀e /∈ EM : e(xi, yj) = e(xi → yj)
Add vertex s to G′ with edges ∀xi ∈ X, xi /∈ VM : (s→ xi)
Add vertex t to G′ with edges ∀yj ∈ Y, yj /∈ VM : (yj → t)
P ← ShortestPathBFS(G′, s, t) . Use BFS to find shortest path from s to t
return P − {e(s, xi), e(yj, t)} . Return path without added edges

26

