### 11.1 Matching in General Graphs

For the most part, we've discussed matching restricted to bipartite graphs. We're going to generalize it now to all graphs. First define the function $o(G)$ as the number of odd connected components in $G$. As we know, an odd connected component has an odd number of vertices. In order for a graph to have a perfect matching, we'll use what could loosely be considered as a generalization of Hall's Condition.

Tutte's Theorem states that a graph $G$ with a perfect match satisfies the inequality $\forall S \subseteq V(G): o(G-S) \leq|S|$. Formally, a graph $G=(V, E)$ has a perfect matching if and only if for every possible vertex set $S \subseteq V(G)$, the subgraph induced by $V-S$ has at most $|S|$ connected components with an odd number of vertices. Let's develop a proof for Tutte's Theorem.

### 11.2 Independent Sets, Dominating Sets, and Covers

A vertex cover of a graph $G$ is a set $Q \subseteq V(G)$ that contains at least one endpoint on all $e \in E(G)$. The vertices in $Q$ cover $E(G)$. An edge cover of $G$ is a set $L \subseteq E(G)$ such that $L$ has at least one edge incident on all $v \in V(G)$. The edges in $L$ cover $V(G)$.

The König-Egerváry Theorem states that if $G$ is a bipartite graph, then the size of a maximum matching in $G$ equals the minimum size of a vertex cover. We can prove this theorem too.

An independent set of vertices on a graph $G$ are a set of vertices that are not connected by an edge. The size of a maximum independent set on $G$ is called the independence number of $G$. For a bipartite graph, this isn't necessarily the size of the larger partite set.

In $G, S \subseteq V(G)$ is an independent set if and only if $\bar{S}$ is a vertex cover. Thus a maximum independent set is the complement of a minimum vertex cover, and their sizes summed equals the order of $G$. You'll be proving this in the third homework.

Similar to a vertex cover is the notion of dominating sets. A dominating set is some vertex set $S \subseteq V(G)$ where $\forall v \in V(G): v \in S$ or $\exists u \in N(v)$ such that $u \in S$. That is, a set $S$ is dominating on some $G$ if all vertices of $G$ are either in $S$ or have a neighbor in $S$.

