13.1 2-Connected Graphs

We're going to talk more specifically about 2-connected and 2-edge-connected graphs. We can characterize them using internally disjoint paths. Two u, v-paths are internally disjoint if there is no common internal vertex. Similarly, two u, v-paths are internally edge-disjoint if there is no common internal edge. Whitney proved that a graph G of at least three vertices is 2-connected if and only if for all $u, v \in V(G)$ there exists at least two internally disjoint u, v-paths. We'll also prove this. Additionally and equivalently:

- G is connected and has no cut vertex
- $\forall u, v \in V(G)$ there exists some cycle $C \in G: u, v \in C$
- $\delta(G) \geq 1$ and every pair of edges in G lies on a common cycle

A subdivision of an edge (u, v) is the operation of replacing (u, v) with two edges attached to a new vertex, i.e., (u, w) and (v, w). Subdividing any arbitrary edge in a 2 -connected graph will not affect the graph's 2-connectivity.

An ear decomposition of G is a decomposition of the edges of G into a sequence of paths $P_{0}, P_{1}, \ldots, P_{k}$, where P_{0} is a closed path (cycle) and for $i \geq 1 P_{i}$ has unique endpoints in $P_{0} \cup \ldots \cup P_{i-1}$. These P are called ears or open ears. A graph is 2-connected if and only if it has an ear decomposition and every cycle in a 2 -connected graph is the initial cycle in some ear decomposition. We will use the idea of subdivisions in our proof of the preceding sentence.

A closed-ear decomposition of G is a decomposition P_{0}, \ldots, P_{k} such that P_{0} is a cycle and P_{i} for $i \geq 1$ is a path with unique or non-unique endpoints in $P_{0} \cup \ldots \cup P_{i-1}$. These P are called closed ears. A graph is 2-edge-connected if and only if it has a closed-ear decomposition and every cycle in a 2-edge-connected graph is the initial cycle in some closed ear decomposition.

Note that every 2-connected graph is necessarily 2-edge-connected.

13.2 Biconnectivity

A graph that has no cut vertices is also called biconnected. We note that graphs K_{1} and K_{2} would also be considered biconnected even if they aren't 2-connected by our prior characterizations. The biconnected components (BiCCs) of a connected (but not necessarily biconnected) graph are the maximal subgraphs of the graph that are themselves biconnected. These are also called blocks. A vertex that connects to different blocks is called an articulation point or simply a cut vertex. A block-cutpoint graph is a bipartite graph where one partite set consists of cut-vertices and one partite set consists of contracted representations of of every BiCC. Edges in this bipartite graph represent which articulation points connect ${ }_{29}$ gnnect which blocks.

