
16.1 Vertex Coloring

Assume all graphs are undirected, connected, and without self loops. You’ll note that
multi-edges are irrelevant for the following discussions and self loops make the problems
undefined.

A k-coloring of a graph is a labeling f : V (G) → S, with k = |S|. Essentially, each
vertex is assigned a color of 1 . . . k. A coloring is proper if no adjacent vertices share
the same color. A graph is k-colorable if it has a proper k-coloring.

The chromatic number of a graph χ(G) is the least k for which G is k-colorable. A
graph is k-chromatic if χ(G) = k. A proper k-coloring of a k-chromatic graph is an
optimal coloring. Note that an optimal coloring is not necessarily unique.

If χ(H) < χ(G) = k for every subgraph H of G, where H is not isomorphic to G, then G
is color-critical.

Remember back to when we discussed independent sets. We can observe that sets com-
prised of vertices of the same color in a proper coloring are all independent.

16.2 Greedy Coloring

A simple greedy algorithm for creating a proper coloring is shown below. The basic idea
is do a single pass through all vertices of the graph in some order and label each one
with a numeric identifier. A vertex will labeled/colored with the lowest value that doesn’t
appear among previously colored neighbors.

procedure GreedyColoring(Graph G(V,E))
for all v ∈ V (G) do

color(v)← −1

for all v ∈ V (G) in order do
isCol(1 . . .∆(G) + 1)← false
for all u ∈ N(v) where color(u) 6= −1 do

isCol(color(u))← true

for k = 1 . . .∆(G) + 1 do
if isCol(k) = false then

color(v)← k
break

k ← max(color(1 . . . n))
return k

33

16.3 Coloring Bounds

Obviously, 1 ≤ χ(G) ≤ n.

For a graph with a non-empty edge set, its easy to see that 2 ≤ χ(G).

For a tree, or any other bipartite graph, we can show that 2 = χ(G).

For a clique Kn : χ(G) = n. The clique number of G, ω(G), is the maximum size of any
clique in a general graph G. We can see that χ(G) ≥ ω(G).

Remember that the independence number, α(G), is the size of the largest possible inde-
pendent set. We can also see that χ(G) ≥ n

α(G)
.

If ∆(G) is the maximal degree in a graph, then a logical argument based on our greedy
coloring algorithm shows that χ(G) ≤ ∆(G) + 1.

Running our greedy coloring algorithm on a selected vertex order can slightly improve
our bounds. If we run on vertices in non-increasing order, or d1 ≥ d2 ≥ · · · ≥ dn, then
χ(G) ≤ 1 + max

i=1...n
min{di, i − 1}. This gives a bound of one plus the maximum over all

vertices of the lesser of either the vertex’s degree or its index in the ordering minus one.
Note that this bound will be equivalent to the maximum degree based bound discussed
last class (χ(G) ≤ ∆(G) + 1), should there be more than ∆(G) vertices with a degree of
∆(G).

However, we can improve this bound slightly further by creating an even smarter vertex
order. If we are able to create a vertex order such that each vertex has at most k−1 : k =
∆(G) lower-indexed neighbors, then greedy coloring will give us a bound χ(G) ≤ ∆(G).
Brooks’ Theorem states we can create such an order for all graphs except cliques and
cycle graphs with an odd length.

16.4 Looseness of these Bounds

In practice, the above bounds are very loose. Trees have a chromatic number of χ(T) = 2,
but can have an arbitrarily large maximum degree. Likewise, we’ve noted before that
χ(G) ≥ ω(G), where ω(G) is the size of the largest clique in G.

However,triangle-free graphs can have an arbitrarily large chromatic number. One way
to demonstrate this is to create triangle-free graph through Mycielski’s Construction.
Given triangle-free graph G with vertices {v1, . . . , vn} and χ(G) = k, we can create G′

with χ(G′) = k+1 by adding vertices {u1, . . . , un} and vertex w to G, making ui adjacent
to all in N(vi) and having N(w) = {u1, . . . , un}. An examination of this construction
shows that it produces a triangle-free graph G′ with a larger chromatic number than G.

34

