17.1 Extremal Coloring

We’ll now examine the structure of k-chromatic graphs, or graphs with chromatic number

of k.

How small can a k-chromatic graph be? We can show that every k-chromatic graph with
n vertices has at least (g) edges.

How large can a k-chromatic (simple) graph be? Let’s think in terms of multipartite graph.
A complete multipartite graph is a generalization of a complete bipartite graph for
some arbitrary number z independent sets {51, S, ..., S, }, where Vu,v € V(G) : (u,v) €
E(G) iff u e S;,v e S;:i# j. Obviously, a complete multipartite graph is k-chromatic
when there are k sets. A Turan Graph is the complete r-partite graph with n vertices
whose partite sets differ in size by at most 1, i.e., they have sizes of either || or [%].

Among simple r-partite graphs with n vertices, the Turan graph is the unique graph with
the most edges. Further, among n vertex graphs with no r 4+ 1-clique, the Turan graph
has the maximum number of edges. In other words, A Turan graph is the maximal n
vertex graph with an r-coloring.

17.2 Color-critical Graphs

Remember that a graph G is color-critical when every subgraph H of G has a lesser
chromatic number. This implies that the removal of any edge or vertex from G decreases
the minimal number of colors required for a proper coloring, or x(G —¢) < x(G), Ve €
E(G). To show a graph is color-critical, we only need to compare it with subgraphs
obtained by removing a single edge.

For a k-critical graph, we can say that there exists on a proper k-coloring of G, Vv € V(G)
the color on v appears nowhere else and the other k—1 colors appear in N (v). Additionally,
Ve € E(G), every proper k — 1 coloring of G — e gives the same color to the two endpoints
of e.

If G is a graph with x(G) > k and has partitions X,Y, where G[X]| and G[Y] are k-
colorable, then the edge cut [X, Y] has at least k edges.

Also, every k-critical graph is (k — 1)-edge-connected.
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17.3 Minimum Vertex Coloring

In the context of vertex coloring, we’ve focused on placing bounds on the chromatic
number of a graph. Next class, we’ll discuss how it might be possible to determine the
chromatic number y(G) exactly. The minimum vertex coloring problem is the problem
of coloring a graph G with x(G) colors, or the minimum number of colors possible. This
problem is NP-complete. Solving it exactly in the general case is exponential in the size
of the graph, with known approaches being backtracking/dynamic programming or just
brute force enumeration.

As we’ve noted with greedy coloring, we have no guarantee that a minimum number of
colors will be output by the algorithm. As we can also observe, modifying the processing
order of vertices will change the quality (in terms of number of colors) of the end result.
In fact, there does exist some processing ordering of vertices such that greedy coloring’s
output will be optimal (homework problem). Unfortunately, determining such an ordering
is NP-hard.

In general, the minimum vertex coloring problem is usually tackled with heuristics. One
of the more well-known is from Brélaz, where we process vertices in order of which vertex
currently has the most colors in its neighborhood. Ties are broken based on which vertex
has the most uncolored vertices in its neighborhood. The rationale for this order is that
we first color the vertices which are the most “difficult” to color.
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