### 19.1 Planarity

A curve is the image of a continuous map from $[0,1]$ to $\mathbb{R}^{2}$. A polygonal curve is a curve composed of finitely many line segments. A polygonal $u, v$-curve starts at $u$ and ends at $v$.

A drawing of a graph is a function $f$ defined on defined on $V(G) \cup E(G)$ that assigns each $v \in V(G)$ to a distinct point $f(v)$ in the plane and assigns each $e=(u, v) \in E(G)$ a polygonal $f(u), f(v)$-curve. A point $x=f(e) \cap f\left(e^{\prime}\right)$ where $e \neq e^{\prime}$ and $x$ isn't a common endpoint of $e$ and $e^{\prime}$ is called a crossing.

A graph is planar if it has a drawing without crossings. Such a drawing is a planar embedding of $G$. A plane graph is a particular planar embedding of a planar graph. The faces of a plane graph are the maximal regions of the plane that contain no point in the embedding. Every finite plane graph has one unbounded face, the outer face.

Let's try and see if $K_{5}$ and $K_{3,3}$ are not planar; i.e., we can't draw them such that no crossing exists.

A graph is outerplanar if it has an embedding with every vertex on the boundary of the unbounded face. The boundary of the outer face of a 2 -connected outerplanar graph is a spanning cycle.

Let's now try and see if $K_{4}$ and $K_{2,3}$ are planar but not outerplanar.

### 19.2 Dual Graphs

The dual graph $G^{*}$ of a plane graph $G$ is a plane graph whose vertices are the faces of $G$. An edge $e^{*}=(x, y) \in G^{*}$ connects vertices $x, y$ representing the faces $X, Y$ separated by an edge $e \in E(G)$. The number of edges incident to $x \in V\left(G^{*}\right)$ in the plane graph is the number of the edges bounding the face of $X$ in $G$ in a walk around its boundary.

A dual graph can be dependent on a particular embedding of a planar graph. I.e., two embeddings of a planar graph can have dual graphs that are not isomorphic. However, whenever $G$ is connected, it is possible for us to draw the dual such that $G$ is isomorphic to $\left(G^{*}\right)^{*}$.

The length of a face of a plane graph $G$ is the total length of the closed walks in $G$ bounding the face. If $l\left(F_{i}\right)$ is the length of face $F_{i}$ in plane graph $G$, then $2|E(G)|=$ $\sum l\left(F_{i}\right)$.

The following are all equivalence statements:

1. Plane graph $G$ is bipartite.
2. Every face of $G$ has even length.
3. The dual graph $G^{*}$ of $G$ is Eulerian.

### 19.3 Euler's Formula

Euler's Formula, $(n-e+f=2)$, relates the number of vertices $n$ with the number of edges $e$ and faces $f$ in a connected planar graph. We can easily prove that this relation holds with induction. This implies that all planar embeddings of a connected graph $G$ have the same number of faces. We can also use this relation to show that if $G$ is a simple plane graph with at least three vertices, then $e \leq 3 n-6$. If $G$ is triangle-free, then $e \leq 2 n-4$. Additionally, we can see use the relation to more formally prove that $K_{5}$ and $K_{3,3}$ are non-planar.

A maximal planar graph is a simple planar graph graph that is not a spanning subgraph of another planar graph (except one isomorphic to itself). A triangulation is a simple plane graph where every face boundary is a 3 -cycle. We can show that if $G$ is a maximal planar graph, then $G$ is a triangulation with $3 n-6$ edges.

