
CSCI-4974/6971: Homework 4
<v1.0> updated April 10, 2024

Distributed Graph Processing

Due Date: Friday 24 April 2024, 11:59pm via Submitty
But accepted until 1 May.

For this assignment, we are going to modify some of the prior code we have worked with
to allow for distributed parallel graph processing. To do this, we will be using MPI within
Python via mpi4py. We will focus specifically on Breadth-first Search (BFS). Since the goal
here is to observe computational differences with parallelization, we will be using one of our
‘larger’ datasets:

• p2p-Gnutella: http://cs.rpi.edu/~slotag/classes/SP24m/hw/p2p-Gnutella31.data
(for testing)

• Congress Tweets : http://cs.rpi.edu/~slotag/classes/SP24m/hw/congress.data
(for debugging)

We will be using Submitty for collecting homeworks. Upload a single *.py file that outputs
responses for all of the below. There will be separate gradeables listed for the 4974/6971
sections. Pay careful attention to output formatting. Your code should be runable as a
script on the command line (via bash$ mpirun -n # python3 hw04.py). You can use
any NetworkX/NumPy/SciPy functionality you wish, but do not use any other
external libraries unless otherwise specified. For this assignment, you will also need
to install MPI4Py.

1. We will be implementing distributed BFS. The basic program flow is as follows. Please
see the template file hw04.py for more detailed instructions. We will also be going
through this homework in class in considerable detail.

• Phase 1: Read in the dataset and select a root. We will read in our datasets in
the same way we have in the past. Though, we will not be using the full graph
for our processing - more details are in Phass 3 and 4.

• Phase 2: Determine our parallel environment details. Specifically, each rank (i.e.,
process) needs to determine the total number of processors for communication and
its specific process ID within the communicator.

1

http://cs.rpi.edu/~slotag/classes/SP24m/hw/p2p-Gnutella31.data
http://cs.rpi.edu/~slotag/classes/SP24m/hw/congress.data


• Phase 3: Next, we want to determine the “local” vertices for each rank. Sim-
ply cast G.nodes() as a list, and partition the list in int(G.order() / nprocs

chunks, where nprocs is the total number of processors as determined in Phase
2. Note that nprocs might not evenly divide G.nodes(), so simply assign all the
‘remainder’ to the highest number rank.

• Phase 4: Here, we will create the local graph. This graph will include all of the
locally-owned vertices and all of their incident edges. Note that this will include
additional vertices in the graph which are not local. These are called the “ghost”
vertices. For ghost vertices, we also need to know their rank for communications.
The get rank() function is included for this purpose.

• Phase 5: This will be where we run our distributed BFS. The primary modifica-
tion will be to add communication functions. Each rank will have a local queue
that will only contain local vertices. When a ghost vertex is discovered as a neigh-
bor of a vertex in the queue, we want to communicate that vertex to the owning
rank. We will do this by creating a list for each rank, appending the vertices to
send to that list, and then eventually calling MPI send() and MPI recv() to do
the communications.

Note in the template file where modifications are expected. Observe whether the timing
results scale with an increasing number of ranks. In what circumstances would one
expect scaling vs not expect it?

2


