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Community Detection 
And  
Community Optimization



Content
• Modularity  

• Modularity Maximation: 

• Newman’s FastGreedy Algorithm 

• Louvain Algorithm 

• Resolution Limit 

• Conductance



Demo: Zachary Karate graph and its ground-truth communities

Modularity



• How do we measure modularity? 

• Compare the topology of the random network to 
the given network 

• how condensed is the graph? 

• measures the density of links inside communities 
compared to links between communities 

• Basic Hypothesis: 

• Random network lacks inherent community 
structure 

• Measure how clustered our network is relative to 
what’s randomly expected 

• Usually used for optimization or relative comparison

Modularity



Computing Modularity

Modularity

 

• Where,  

• Modularity 

•  , number of Edges 

•  vertex pairs in the community 

• Adjacency Matrix 

• expected # of edges between  and  in a random graph 

• Value in between:  

•

M =
1

2m ∑
∀u,v∈C

(Auv −
d(u)d(v)

2m )

M →

m → |E(G) |

∀u, v ∈ C →

A →

d(u)d(v)
2m

→ u v

[ − 1/2,1]



Modularity Maximization

• Maximize modularity as a community detection algorithm 

• Usually: Greedy Agglomerative 

• Each observation starts in its cluster, and greedily, pairs of clusters 
are merged as one moves up the hierarchy. 

• Newman Algorithm 

• Louvain Algorithm



Modularity Maximization

• Greedy Agglomerative Algorithm: 

• Initially: all vertices in unique communities 

• Iterate while # communities > 1: 

• Merge community pair that maximizes modularity 

• Pros: 

• Encapsulates the hierarchy 

• Cons: 

• Issues with modularity calculations in practice

Newman’s FastGreedy Algorithm



Modularity Maximization

• Similar to the Newman Algorithm 

• But with explicit edge contractions 

• Initially, each node in the network is assigned a community 

• Edge contraction: 

• For each node, compute the difference in modularity if it is 
placed in its neighbors’ community. Move if there is any gain. 

• Contract all the nodes within the communities to a “super-
node”  

• Repeat the edge contraction method until modularity does not 
increase

Louvain Algorithm



• It cannot resolve relatively small communities! 

 

• the expected number of edges between nodes  and  in a 
random graph does not adequately scale for detecting smaller 
communities in large networks 

• become insensitive to communities smaller than a certain scale

M =
1

2m ∑
∀u,v∈C

(Auv −
d(u)d(v)

2m )

u v

Issues with Modularity
Resolution Limit



Issues with Modularity

• How small? 

• Change in modularity by combining communities  and  

 

• edges between  and  

• sum of degrees of vertives in  or  

• Consider: 

A B

ΔM =
lAB

m
−

kAkB

2m2

lAB → A B

kA, kB → A B

lAB

m
=

kAkB

2m2
⟹ lAB =

kAkB

2m

Resolution Limit



• Assuming we gain from merging  and  

 ,  , and   

• Then,  

 

• Hence, the lower bound on the size of 
the community that modularity 
optimization can find is .

A B

lAB >
kAkB

2m
kA = kB = k lAB = 1

1 >
k2

2m
2m > k2

2m > k

k ≤ 2m
Example: Ring of Cliques

Issues with Modularity
Resolution Limit



Issues with Modularity
Other Issues:

• The expected density of a random network: 

 

• Different types of networks have different degree distribution: 

• Dense graphs, skewed, or dense subgraphs 

• Takeaways: Our modularity value can be meaningless in skewed or 
dense networks 

• Potential Fix: Use the actual attachment probabilities

d(u)d(v)
2m



Conductance

• A measure of how quickly a random walk converges to a stationary 
state 

• Lower Conductance  More defined communities 

• Defined in terms of edge cut,  and : 

• Conductance ( ) =  

• number of edges in cut 

• sum of degrees in 

⟹

S S̄

S
cut(S)

min(KS, KS̄)

cut(S) →

KS → S


