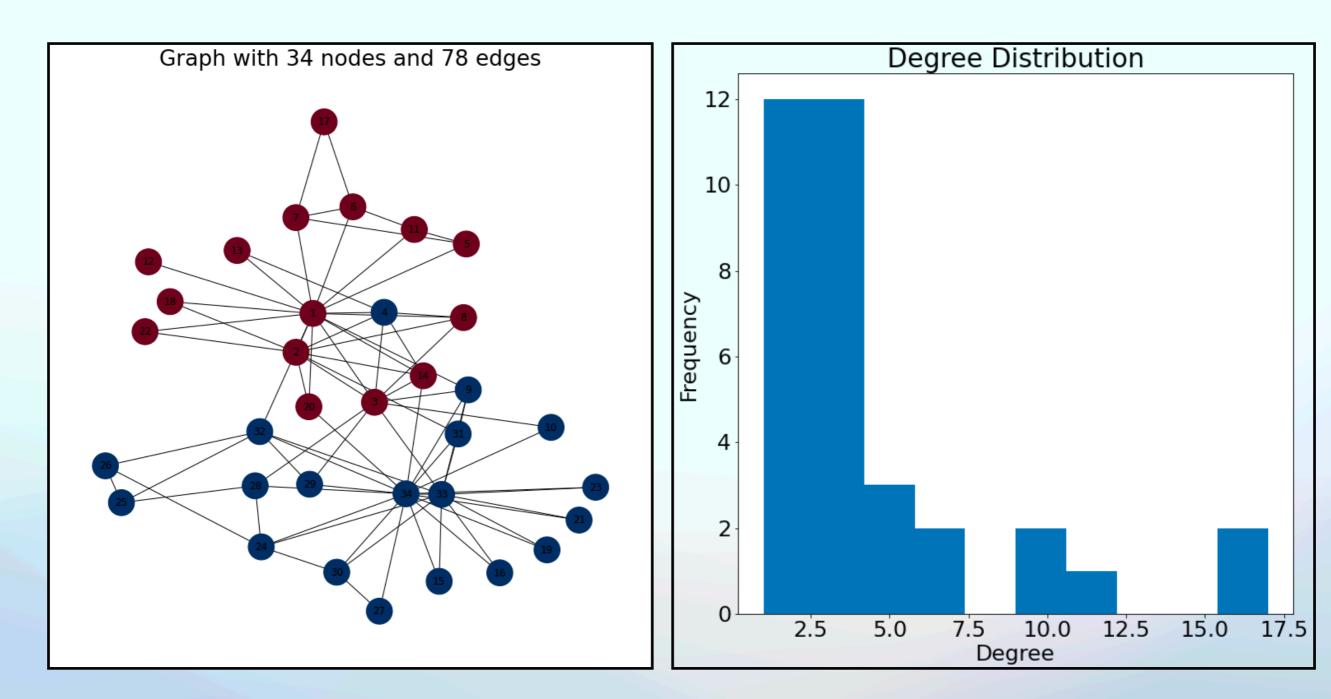
Community Detection And Community Optimization

Content

- Modularity
- Modularity Maximation:
 - Newman's FastGreedy Algorithm
 - Louvain Algorithm
- Resolution Limit
- Conductance

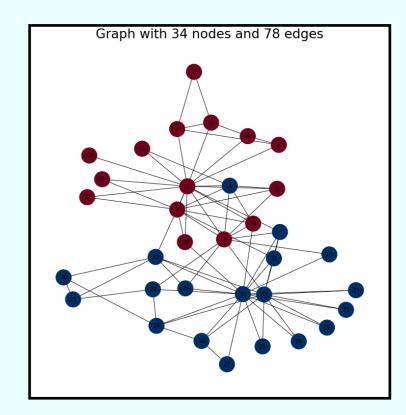
Modularity

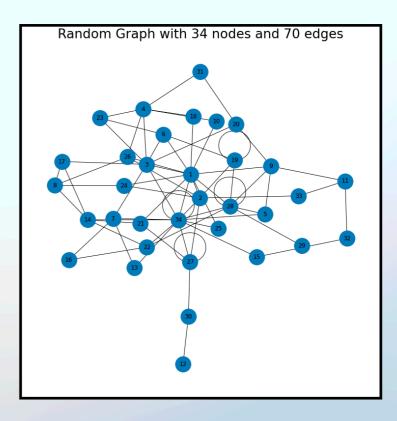
Demo: Zachary Karate graph and its ground-truth communities



Modularity

- How do we measure modularity?
 - Compare the topology of the random network to the given network
 - how condensed is the graph?
- measures the density of links inside communities compared to links between communities
- Basic Hypothesis:
 - Random network lacks inherent community structure
 - Measure how clustered our network is relative to what's randomly expected
- Usually used for optimization or relative comparison





Modularity

Computing Modularity

$$M = \frac{1}{2m} \sum_{\forall u,v \in C} \left(A_{uv} - \frac{d(u)d(v)}{2m} \right)$$

- Where,
 - $M \rightarrow$ Modularity
 - $m \rightarrow |E(G)|$, number of Edges
 - $\forall u, v \in C \rightarrow$ vertex pairs in the community
 - $A \rightarrow Adjacency Matrix$

- $\frac{d(u)d(v)}{2m} \rightarrow \text{expected # of edges between } u \text{ and } v \text{ in a random graph}$
- Value in between: $\begin{bmatrix} -1/2, 1 \end{bmatrix}$

Modularity Maximization

- Maximize modularity as a community detection algorithm
- Usually: Greedy Agglomerative
 - Each observation starts in its cluster, and greedily, pairs of clusters are merged as one moves up the hierarchy.
 - Newman Algorithm
 - Louvain Algorithm

Modularity Maximization

Newman's FastGreedy Algorithm

- Greedy Agglomerative Algorithm:
 - Initially: all vertices in unique communities
 - Iterate while # communities > 1:
 - Merge community pair that maximizes modularity

- Pros:
 - Encapsulates the hierarchy
- Cons:
 - Issues with modularity calculations in practice

Modularity Maximization

- Similar to the Newman Algorithm
 - But with explicit edge contractions
- Initially, each node in the network is assigned a community
- Edge contraction:
 - For each node, compute the difference in modularity if it is placed in its neighbors' community. Move if there is any gain.
 - Contract all the nodes within the communities to a "supernode"
- Repeat the edge contraction method until modularity does not increase

Issues with Modularity Resolution Limit

• It cannot resolve relatively small communities!

$$M = \frac{1}{2m} \sum_{\forall u,v \in C} \left(A_{uv} - \frac{d(u)d(v)}{2m} \right)$$

- the expected number of edges between nodes u and v in a random graph does not adequately scale for detecting smaller communities in large networks
- become insensitive to communities smaller than a certain scale

Issues with Modularity Resolution Limit

- How small?
- Change in modularity by combining communities A and B

$$\Delta M = \frac{l_{AB}}{m} - \frac{k_A k_B}{2m^2}$$

- $l_{AB} \rightarrow \text{edges between } A \text{ and } B$
- $k_A, k_B \rightarrow$ sum of degrees of vertives in A or B

• Consider:

$$\frac{l_{AB}}{m} = \frac{k_A k_B}{2m^2} \implies l_{AB} = \frac{k_A k_B}{2m}$$

Issues with Modularity Resolution Limit

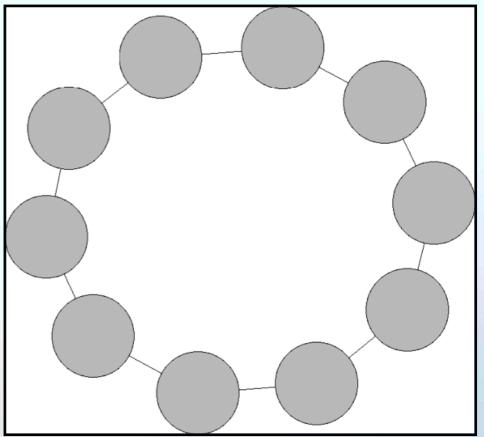
- Assuming we gain from merging \boldsymbol{A} and \boldsymbol{B}

$$l_{AB} > \frac{k_A k_B}{2m}$$
, $k_A = k_B = k$, and $l_{AB} = 1$

• Then,

$$1 > \frac{k^2}{2m}$$
$$2m > k^2$$
$$\sqrt{2m} > k$$

• Hence, the lower bound on the size of the community that modularity optimization can find is $k \leq \sqrt{2m}$.



Example: Ring of Cliques

Issues with Modularity Other Issues:

• The expected density of a random network:

 $\frac{d(u)d(v)}{2m}$

- Different types of networks have different degree distribution:
 - Dense graphs, skewed, or dense subgraphs
- Takeaways: Our modularity value can be meaningless in skewed or dense networks
- Potential Fix: Use the actual attachment probabilities

Conductance

- A measure of how quickly a random walk converges to a stationary state
- Lower Conductance \Longrightarrow More defined communities
- Defined in terms of edge cut, S and $ar{S}$:

Conductance (S) =
$$\frac{\operatorname{cut}(S)}{\min(K_S, K_{\bar{S}})}$$

- $\operatorname{cut}(S) \rightarrow$ number of edges in cut
- $K_S \rightarrow$ sum of degrees in S

Conductance

- A measure of how quickly a random walk converges to a stationary state
- Lower Conductance \Longrightarrow More defined communities
- Defined in terms of edge cut, S and $ar{S}$:

Conductance (S) =
$$\frac{\operatorname{cut}(S)}{\min(K_S, K_{\bar{S}})}$$

- $\operatorname{cut}(S) \rightarrow$ number of edges in cut
- $K_S \rightarrow$ sum of degrees in S

Review

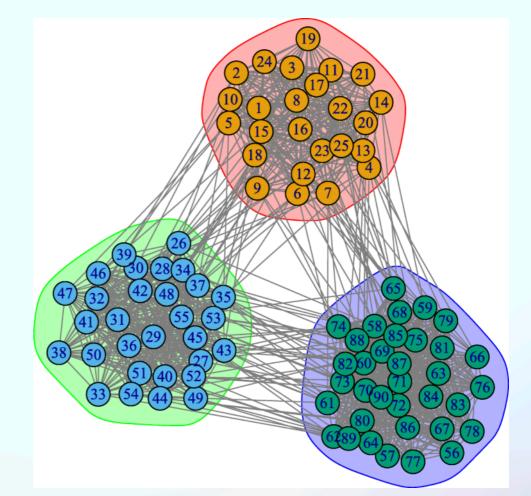
- Evaluating community detection algorithms using
 - modularity calculation
 - Issues with modularity maximization
 - Resolution limit
 - edge cuts, edge cut ratio,
 - Number of edges between different categories
 - Take into account for the size of the community
 - conductance
 - How quickly a random walk traverses through the graph

Evaluating Community Detection Algorithms

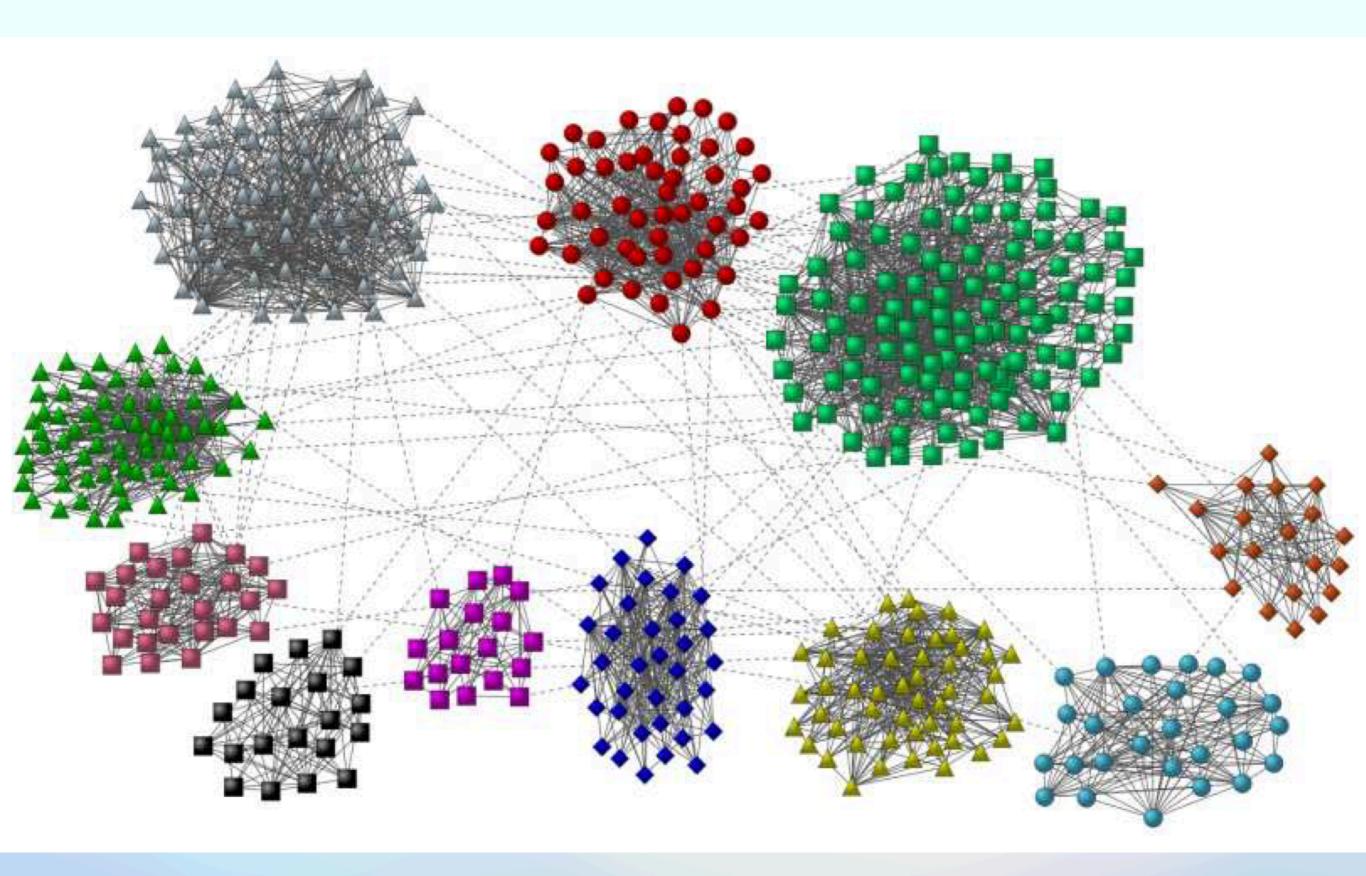
- **Prior methods only take the topology and Community Detection output into consideration
 - Ideally => Compare against the ground truth
 - Problem:
 - Hard to find within Real-world data
 - Big Companies: Google, Facebook
 - Solution:
 - Generate datasets
 - Generate a graph with a known structure
 - # of communities
 - Size of communities
 - Community coherence

Solution

- Generate a graph with a known structure
 - # of communities
 - Size of communities
 - Community coherence
 - mixing parameter



• ratio of $\mu = \frac{\text{external edges}}{\text{total edges}}$



- Gold Standard for evaluating Community Detection
 Algorithm
- Uses power-law distributions for degrees and community sizes
- assigns vertices \rightarrow communities
- Wires vertices together(edge) while maintaining μ

Normalized Mutual Information

	С		Community Detected	Ground Truth		
Index	Node	Community Detected	Ground Truth		A	
1	Α	1	1			C
2	Β	2	2			D
3	С	3	3	С		
4	D	1	3	B	E	В
5	Е	1	4			
I I		· · · · ·				

Normalized Mutual Information

- Set of N elements: $S = \{s_1, s_2, \dots, s_N\} \rightarrow$ vertex
- Two Partition:
 - $U = \{u_1, u_2, \dots, u_a\} \rightarrow \text{Comm. Det.}$
 - $V = \{v_1, v_2, \dots, v_b\} \rightarrow \text{Ground Truth}$
 - Contingency Table, T
 - Overlapping for all possible $U_i V_j$ pairs

• $T_{ij} = $	$U_i \cap$	V_i
----------------	------------	-------

Index	Node	Comm. Det.	Ground
1	A	1	3
2	В	2	1
3	С	3	3
4	D	1	3
5	Е	1	4

	1	2	3	4
1			2	1
2	1			
3			1	
4				

Contingency Table (T)

Index	Node	Comm. Det. (U)	Ground (V)
1	А	1	3
2	В	2	1
3	С	3	3
4	D	1	3
5	E	1	4

Normalized Mutual Information

	1	2	3	4
1			2	1
2	1			
3			1	
4				

Contingency Table (T)

 $P_u(i) = \frac{|U_i|}{N}$: random prob. that a node is in U partition

 $P_{v}(j) = \frac{|V_{j}|}{N}$: random prob. that a node is in V partition

 $P_{UV}(i,j) = \frac{T_{ij}}{N}$: random prob. that a node are in both U and V partition

Normalized Mutual Information

•
$$P_u(i) = \frac{|U_i|}{N}$$
, $P_v(j) = \frac{|V_j|}{N}$ and $P_{UV}(i,j) = \frac{T_{ij}}{N}$

• Entropy:

•
$$H(U) = \sum_{i=1}^{R} P_U(i) \log(P_U(i))$$
 and $H(V) = \sum_{j=1}^{C} P_V(j) \log(P_V(j))$

• Mutual Information:

$$MI(U, V) = \sum_{i=1}^{R} \sum_{j=1}^{C} P_{UV}(i, j) \log\left(\frac{P_{UV}(i, j)}{P_{U}(i)P_{V}(j)}\right) = H(U) - H(U|V)$$

Normalized Mutual Information:

$$NMI = \frac{MI}{\frac{1}{2}\left(H(U) + H(V)\right)}$$

Normalized Mutual Information

