Graph Theory Final Practice Problems

Use these as study aids in conjunction with notes, homeworks, and weekly problems...

- 1. Use the concept of ear decompositions to prove that for connected but **not** biconnected graph G, where $C_n \notin G : n =$ even, all blocks B_i of G are isomorphic to some $C_n : n =$ odd or K_2 .
- 2. Graph G is **not** perfect, is connected, has $|V(G)| \ge 5$, and $\chi(G) = \omega(G)$. Draw a possible G.
- 3. $\forall C_n, C_m \subseteq G$ where $n, m = \text{odd} : \exists v \in C_n, C_m$. I.e., all odd cycles in G pairwise share a common vertex. Prove $\chi(G) \leq 5$.
- 4. Consider minimal non-planar graph G and graph H = G e. Prove or disprove that we can guarantee $\exists e \in E(G)$ such that H is a maximal planar graph.
- 5. For each of the following, give tight bounds (upper and/or lower) on the possible connectivity $\kappa(G)$ and edge connectivity $\kappa'(G)$ of graph G. Note that strict equality is the tightest possible bound. (5 pts each)
 - (a) G has a closed-ear decomposition but does not have an open-ear decomposition. G also has a minimum degree of $\delta(G) = 4$.
 - (b) G is biconnected, has more than one maximal biconnected block, and one block is isomorphic to K_4 .
- 6. For each of the following, give tight bounds (upper and/or lower) on the possible chromatic number $\chi(G)$ of graph G. Note that strict equality is the tightest possible bound. (5 pts each)
 - (a) G has chromatic polynomial $\chi(G, k) = k(k-1)^4 k(k-1)^3 + k(k-1)(k-2)$.
 - (b) G is biconnected, has more than one maximal biconnected block, and one block has K_4 as an induced subgraph.
- 7. Prove that the vertices of an outerplanar graph can be partitioned into two sets such that the subgraph induced by each set forms a disjoint union of paths.
- 8. For each of the following, prove that the described G must be Hamiltonian or give a counter-example.
 - (a) G is Eulerian.
 - (b) L(G) is Eulerian.
 - (c) \overline{G} is not Hamiltonian.
 - (d) The closure of G is Hamiltonian.
 - (e) G = L(H) where H is Hamiltonian.