Graph Theory Homework 1

Due: 2 Feb 2024 at midnight EST as a PDF on Submitty
v1.1: Last Updated January 21, 2024

1. Determine the number of automorphisms for each of the following graphs, in terms of n :
(a) Cycle graph C_{n}
(b) Clique graph K_{n}
(c) Path graph P_{n}
2. Which of these sequences are graphic? For the ones that are, construct a realization. $S=\{1,1\}, L=\{4,3,4,4,4,1,4\}, O=\{7,5,2,1,3,1\}, T=\{1,1,1,1\}, A=\{1,2,3,4,5\}$
3. Consider graph G where $|V(G)|<|E(G)|$. Prove that G must have a cycle. Note: I don't give any additional assumptions about G, so you will need to explicitly consider if G is connected, simple, etc.
4. Identify the smallest n for the classes of graphs defined below, such that there exists two non-isomorphic graphs G, G^{\prime} within that class and $|V(G)|=\left|V\left(G^{\prime}\right)\right|=n$. Prove or otherwise justify your response.
(a) Simple graphs.
(b) Loopy graphs. (Graphs explicitly containing at least one loop)
(c) Non-loopy multigraphs. (Contain at least one multi-edge)
(d) Loopy multigraphs. (Contain at least one loop and one multi-edge)
5. Prove using induction that if some G has no odd cycles then G must be bipartite.
6. G is a connected simple graph. G does not contain a triangle or a path of length 3 as induced subgraphs. Prove that G falls into the isomorphism class of a complete bipartite graph $K_{i, j}$, for some arbitrary i and j.
7. G is a k-regular bipartite graph. Prove that if $k \geq 2$ then G has no cut edge.
8. We have a weakly connected loopless directed graph D with $\forall v \in V(D): d^{+}(v)=1$ and $n=|V(D)| \geq 2$. Answer the following in terms of n, prove or otherwise justify your responses:
(a) What are the maximum and minimum number of cycles that D can have in terms of n ?
(b) What is the maximum number of cycles if D isn't weakly connected?
(c) What is the maximum number of cycles if D is neither weakly connected nor loopless?
