Assume M_{1} and M_{2} as 2 -distinct perfect matches on tree T

Consider symmertic difference as $F=M_{1} \Delta M_{2}$
\rightarrow We know lewes must be matched to their sole neighbor, so no edges of leones are in F

Defme $Q=$ set of leaves and their sole neighbors

Consider $T^{\prime}=T-Q$
\rightarrow All components of T^{\prime} will have a P.M. using M_{1} or M_{2}, and all leaves in T^{\prime} will be matched to their sole neigh bor
\rightarrow Hence, no edges of leaves of T^{\prime} will hove an edge in F
\rightarrow we repeat this process until
\rightarrow we repeat this process until rios no edges remain, and observe that F will remain empty,
\Rightarrow Hence, M_{1} and M_{2} must be equal, so any perfect match on a tree is unique a
(2) Assume we howe some maximal match M^{\prime} where $\left|M^{\prime}\right|<\frac{|M|}{2}$
$\rightarrow \forall e=(u, v) \in M^{\prime}$, there is at least 1 and at most 2 edges in M that ore incident to 4 or v
\rightarrow This implies at most $2|M|$ edges in IMI are incident to some $v \in V\left(M^{\prime}\right)$
\rightarrow From our intial assumption we have $\left|M^{\prime}\right|<\frac{|M|}{2} \rightarrow 2\left|M^{\prime}\right|<|M|$

Together, this in plies that at
 most $2\left|M^{\prime}\right|$ are saturated by an edge in IMI, bot the strict in equality implies there must be at least one edge in M not incident to a vertex in M^{\prime}
\Rightarrow As this edge con be added to M^{\prime}, our choice of M^{\prime} is a contradiction, so we x w, so must have $\left|M^{\prime}\right| \geq \frac{|M|}{2}$
(3) Define: $C=$ vertex cover $\bar{C}=$ complement of coven

Note: every edge of G is incident on at least one $v \in C$
G so every edge is therefore incident on at most one vertex in \bar{C}
\Rightarrow so there is no edge between
\Rightarrow so there is no edge between any $u, v \in \bar{C}$, so \bar{C} is an in de pendent set
(4) Recall Tutte's: $\forall S \leq V(G): d(G-S) \leq|s|$
consider some S where $|s| \geqslant 1$
(condition trivially holds for $|s|=0\rangle$
Consider $G^{\prime}=E-S$
and odd component H of G^{\prime}
 is bounded below by $k-1 \leqslant \stackrel{\downarrow}{x}$
Note 2: Degree sum of H

$$
\begin{aligned}
& \text {-gree sum of } H \\
& \sum_{v \in V(H)} d(v)=k|V(H)|^{6 o d d}-x=2|E(H)| \\
& \% \text { parity } \% \\
& Y_{0} \\
& \text { implies } k, x=\begin{array}{l}
\text { both even on } \\
\text { both odd }
\end{array}
\end{aligned}
$$

AND since $k-1 \leqslant x$ we also will have $k \leqslant x$ (due to parity)

We repeat this for all possible H_{i}

We repeat this for an possible 'ii
\rightarrow so at least $k * 0(G-S)$ edges to S from all of H_{i}
\rightarrow and a degree sum of S

$$
\begin{gathered}
\sum_{v \in s} d(v)=k|s| \\
\Rightarrow \quad k * o(G-s) \leq k|s| \\
o(G-s) \leq|s|
\end{gathered}
$$

which holds for all possible choices of S and k
(5)

a) $I=$ edge cover
$0=$ vertex cover
Note: doesn't need to be minimum, cam even just be $E(G), v(F)$
b) No, define $S=\{d\}$

$$
0(G-s)=2>|s|=1
$$

so Tutte's doesn't hold a
\qquad
so Tutte's doesn't hold a
C) $O=\bar{C} \rightarrow$ independent set We note $\forall e \in E(G)$, at most one end point of e is in \bar{C} $\rightarrow \bar{C}$ is independent set \square
(6)
(5)

© (c)

(7) a) The only 1-regular graph is comprised solely of K_{2} components nh rm 0-O $0-0$

$$
0-0
$$

\rightarrow These will always trivially hove a P.M. \square
b) Any odd cycle will do

c) Get's a little trickier

so there wont be a trivial counter-exaple
One approach is just draw all possible 3-regulor configurations and brute force on answer

OR: consider TuHe's

for a degree -2 vertex?

Note: $|V(H)|$ must be odd

$$
|V(H)|=3 ? \quad|\cup(H)|=5 ?
$$

All together now...

H) owe ver: I never required that your example is simple

so this would also work

