Graph Theory Homework 3

Due: 23 Feb 2024 at midnight EST as a PDF on Submitty
v1.1: Last Updated February 19, 2024

1. True or False: Tree T has at most one unique perfect matching. Prove your response.
2. Consider maximum match M on G. Prove that every maximal match M^{\prime} has cardinality bounded by $\left|M^{\prime}\right| \geq \frac{|M|}{2}$.
3. Prove that the complement of any vertex cover on a simple undirected graph is an independent set.
4. Consider graph G where $\forall v \in V(G): d(v)=k,|V(G)|$ is even, and G remains connected after the deletion of any $(k-2)$ edges. Prove that G has a perfect match.
5. Consider the below graph.
(a) Provide an edge cover F and vertex cover C for the below graph.
(b) Prove whether it possible to draw a perfect match M, such that $F=M$.
(c) Provide the complement of C, and show that it is an independent set.

6. Demonstrate a single iteration of our M-augmenting paths algorithm for the bipartite graph below to increase the size of the match M given in bold on the graph below. Explicitly show your steps.

7. For each of the following values of k, construct a k-regular graph that does not have a perfect match. (v1.1) If that is not possible, prove why not.
(a) $k=1$
(b) $k=2$
(c) $k=3$
