(1) Consider an optimal coloring on G COrder colons in any arbitrary way Order vertices with a given color in any arbitrary way
\rightarrow apply greedy coloring
$=>$ as vertices in a color set are all independent, the maximum color they will get assigned is only a function of how many prior color sets were processed
\Rightarrow this grues an optimal ordering a
(2) (and coloring)

$$
\begin{aligned}
& {\left[\sum_{0} C 6\right.} \\
& \Delta\left(C_{6}\right)=2=x\left(c_{6}\right)
\end{aligned}
$$

(3) Assume $\Delta(G) \geq 2 \sqrt{n}$, otherwise trivial (Brooks)
Note: o....r.. neinhboorhend forms mo

Note: every neighbourhood forms an independent set
Case 1: we hove fewer than $\sqrt[v]{n}$ vert v will a degree $d(v) \geq 2 \sqrt{n}$
we color all $N(v)$ with at most \sqrt{n} colors, need at most \sqrt{n} more colors for the remaining per Brookes \Rightarrow \#colors $\leq 2 \sqrt{n}$
Case 2: we have more than \sqrt{n} such
\rightarrow Iteratnely color $N(v)$ with most remainining uncolored
\rightarrow after \sqrt{n} iterations we hove no more such $w \rightarrow$ Brooks \rightarrow \#col $\varepsilon 2 \sqrt{n}$
(4) $w(G)=$ size of largest ind. Set in \bar{F}

Gbecomes clique in G
$=|V(G)|-(m$ in vertex cower on $\bar{G})$
\rightarrow complement of ind. set
$X(G)=\min$ number of edges

$$
\begin{aligned}
& \text { to cover all of }|V(\bar{G})| \\
& \text { it verts shame } \\
& \text { ide thence } \\
& \text { (3.1.22 in the boole) }
\end{aligned}
$$

(3.1.22 in the book)
be colored
sure in G
so $K-E \rightarrow \omega(G)=\chi(G) \square$
(5) We know G has a SEO

Consider this SEO in reverse
\rightarrow when v_{i} is added to G_{i} $N\left(v_{i}\right)$ is a clique
\rightarrow we can greedily color v_{i} with color $\left|N\left(v_{i}\right)\right|+1$
\rightarrow eventually, weill have same v_{j} in largest clique K_{n} getting color $n=\omega(G)=x(\sigma)$

Note: there is no way to induce a subgraph H an G st. H has a chordless cycle (any chord will always induce)
\Rightarrow hence the above applies to sum $H \leqslant C_{T}$ the.. $X(H)=\ldots(H)$
to any $H \subseteq G$, thus $X(H)=\omega(H)$ and G is perfect D
(6) We know $|E(s)| \neq 6$, as that would imply S is K_{4}, and deleting and edge not in S would not affect $\chi(G)=4$

$$
C \text { arsider }|E(S)|=5 \rightarrow \text { only }
$$

\rightarrow U, w have different colors
\rightarrow xis have some or different colors
Consider an S-lobe

\rightarrow must be 3-colorable, So x, y hove some color
\rightarrow this applies to all S-lobes
$=>$ there exists a valid 3-coloring of S and all S-lobes

$$
\begin{gathered}
\text { of }>\text { and all s-iobes } \\
\text { contradiction } x \\
x \quad x \quad x
\end{gathered}
$$

so S must hove $|E(s)| \leq 4$ -
(7) Consider a single step of the recurrence for each

\Rightarrow so they both have the same chromatic polynomial as they
chromatic polynomial as they hove the same result from a step of the recurrence D
(8)

$$
\begin{aligned}
& x(G)=\text { in il }=2 \\
& x\left(G^{\prime}\right)=2+1=3 \\
& (w(G)=2 \\
& w\left(G^{\prime}\right)=2 \\
& \text { via our proof of } \\
& \text { Mycielski }
\end{aligned}
$$

b) $x($ ocd $6, k)$

$$
\begin{gathered}
x\left(9-0^{-0} 9, k\right)-x(980 g, k) \\
\downarrow
\end{gathered}
$$

$$
\begin{aligned}
& x\left(T_{5}, k\right)-x(6,0, k)-x(509 ; k)+X(0-1, k, k)
\end{aligned}
$$

$$
\begin{aligned}
& x\left(T_{5}, k\right)-x\left(T_{4}, k\right)+x\left(C_{4}, k\right)-x\left(T_{5}, k\right)+x\left(T_{4}, k\right) \\
& +x\left(T_{4}, k\right)-x\left(T_{3}, k\right)
\end{aligned}
$$

$$
\begin{aligned}
&=x\left(C_{4}, k\right)+x\left(T_{4}, k\right)-x\left(T_{3}, k\right) \\
& \quad \text { (from class) } \\
&=k(k-I)+2 k(k-I)(k-2)+k(k-I)(k-2)(k-3) \\
&+k(k-1)^{3}-k(k-I)^{2}
\end{aligned}
$$

for $k=1 \rightarrow 0+0+0+0-0$

$$
\begin{aligned}
k=2 \rightarrow & 2(1)+0+0+2-2=2 \\
& =\text { so } \times(G)=2
\end{aligned}
$$

C) No $\rightarrow G$ Las two chord less cycles so G is not chordal and therefor has no SEO

