Graph Theory Homework 5

Due: 29 March 2024 at midnight EST as a PDF on Submitty
v1.0: Last Updated March 19, 2024

1. Prove that the greedy coloring algorithm has an ordering for any graph that will produce an optimal coloring.
2. Draw a non-clique graph G of at least 6 vertices where the chromatic number of G is equal to upper bound given by Brooks' Theorem.
3. Prove that every triangle-free n-vertex graph has a chromatic number of at most $2 \sqrt{n}$.
4. Prove that $\chi(G)=\omega(G)$ when the complement of G is bipartite.
5. Prove that all chordal graphs are perfect.
6. G is a 4 -critical graph having a separating set S of size 4. Prove that a subgraph induced on G with S has at most 4 edges.
7. Prove that the chromatic polynomials of the below 2 graphs are equal.

8. Consider the below G for the following problems.

(a) Draw G^{\prime} created via Mycielski's Construction on G. What is $\omega(G), \omega\left(G^{\prime}\right)$, $\chi(G)$ and $\chi\left(G^{\prime}\right)$?
(b) Use the Fundamental Reduction Theorem to give the chromatic polynomial $\chi(G ; k)$ of G. Use the polynomial to determine the chromatic number of G.
(c) Does the above G have a simplicial elimination ordering? Provide one if possible; if not possible, prove why not. What does that say about whether or not G is perfect?
