(1) Basis $P(|E|=2)=000 \Rightarrow$ trivial decamp. into one P_{3}
b) Assume we hove $P(n), n>2$ which is a simple even connected groph
c) We construct $P(k)=P(n)-P_{3}^{2}$, where P_{3} is orbitrority selected
Note: we can also specifically select sane P_{3} in sone configuration
d) Because of our orbitrory selection of $P_{3}, P(k)$ might not be connected and the compments of $P(k)$ night be odd
\rightarrow However, we can still modify our construction to be able to use our I.H. (inductive hypothesis)
Note: we cam hove at most 3 components in $P(k)$

Let's consider the possibilities Note: parity $1 /$
Case 1: $P(k)$ is a single ever canpanent
Case 2: $P(k)$ is two even caponents
Case 3: $P(k)$ is three even components
Case 4: $P(k)$ is two odd components
Case 5: $P(k)$ is two odd and one even component
e) Case 1,2,3: I.H. on components of $P(k)$ gives us valid decompositions for $P(k)$, we combine then with removed P_{3} to get decomposition on $P(n)$

Case 4: w.l.o.g. we hove the following structure

$$
11 \operatorname{sis}
$$

Note: $H_{1}+(x, y)$ is even

$$
H_{2}+(y, z) \text { is even }
$$

We use I.H. on each of the above and combine decompositions to get our decomposition on $P(n)$

Case 5: We similarly hove the following

we do I.H. on:

$$
\begin{aligned}
& H_{1}+(a, b) \\
& H_{2} \\
& H_{3}+(b, c)
\end{aligned}
$$

$$
H,+(a, b)
$$

$$
H_{2}+(b, c)
$$

H_{3}

$$
H_{3}+(b, c)
$$

$$
H_{3}
$$

\rightarrow We carbine together to get our decamp on $p(n) \square$

Alternate constructions:
Can we select on edge incident on a degrec-1 vertex?

What do components look like if we delete above P_{3} ?

What if there are no degree-1 vertices? (remember from class)

What do the possible configurations look like if we remove edges from a cycle?

