Graph Theory Weekly Problems 2

Due: 19 Jan 2024 at Midnight EST as a PDF on Submitty v1.0: Last Updated January 16, 2024

- 1. Consider simple connected graph G where |E(G)| is even. Use induction to prove that $\exists D = \{P_3, P_3, \ldots, P_3\}$, where D is a decomposition of G and P_3 is the path graph of length 2.
 - (a) First, determine an appropriate basis. Your basis must be in the same class \mathbb{C} specified for the general graph $G \to \mathbb{C} = \{\text{simple, connected, even number of edges}\}$. Generally, we want our basis to be the smallest possible graph in \mathbb{C} .
 - (b) Note that this problem is straightforward to prove via strong induction. To do so, we will next consider some general $G \in \mathbb{C}$, where |E(G)| is greater than our basis.
 - (c) To proceed, we need to figure out some construction on G. This construction must be able to be applied to all possible $G \in \mathbb{C}$, and it must result in some $G' \in \mathbb{C}$ where |E(G')| < |E(G)|.
 - (d) When we have our G', we can use our induction hypothesis to assume that our proof statement holds. I.e., there exists a decomposition of G' that contains only length-2 paths.
 - (e) To finish the proof, we 'undo' our construction and demonstrate how the proof statement (there exists a P_3 decomposition) also holds on G.