Graph Theory Weekly Problems 2

Due: 19 Jan 2024 at Midnight EST as a PDF on Submitty
v1.0: Last Updated January 16, 2024

1. Consider simple connected graph G where $|E(G)|$ is even. Use induction to prove that $\exists D=\left\{P_{3}, P_{3}, \ldots, P_{3}\right\}$, where D is a decomposition of G and P_{3} is the path graph of length 2.
(a) First, determine an appropriate basis. Your basis must be in the same class \mathbb{C} specified for the general graph $G \rightarrow \mathbb{C}=\{$ simple, connected, even number of edges $\}$. Generally, we want our basis to be the smallest possible graph in \mathbb{C}.
(b) Note that this problem is straightforward to prove via strong induction. To do so, we will next consider some general $G \in \mathbb{C}$, where $|E(G)|$ is greater than our basis.
(c) To proceed, we need to figure out some construction on G. This construction must be able to be applied to all possible $G \in \mathbb{C}$, and it must result in some $G^{\prime} \in \mathbb{C}$ where $\left|E\left(G^{\prime}\right)\right|<|E(G)|$.
(d) When we have our G^{\prime}, we can use our induction hypothesis to assume that our proof statement holds. I.e., there exists a decomposition of G^{\prime} that contains only length- 2 paths.
(e) To finish the proof, we 'undo' our construction and demonstrate how the proof statement (there exists a P_{3} decomposition) also holds on G.
