(1) $2=\{2,2\} \rightarrow$ Not graphic

In a simple graph on n vertices, the maximum degree is $n-1$, hence a degree -2 vortex cont exist in a Z-vertex graph \square
Alter natively: Howel-Hakimi

$$
E=\{1,2,3,4\} \rightarrow \text { Not graphic }
$$

Same as above, as degree 4 vertex can't exist in a 4 -vertex graph OR Howel-Hakimi

$$
P=\{1,2,2,3,3,2\}
$$

$\sum_{i \in P} i=13 \rightarrow$ Not graphic, as degree sum cont be odd OR H-H

$$
\begin{equation*}
Y=\{1,2,3,2,2\} \tag{b}
\end{equation*}
$$

using Howel-Hakimi

Using Houel-Hakims

$$
\begin{aligned}
& Y=\left\{\begin{array}{llcc}
a & b & c & d \\
3 & 2 & 2,1 \\
-1 & 2 & 1
\end{array}\right. \\
& Y^{\prime}=\left\{\begin{array}{cccc}
b^{-1} & -1 & -1 \\
1 & 1 & 1^{-1} & 1 \\
-1 & 1
\end{array}\right\} \\
& y^{\prime \prime}=\left\{\begin{array}{lll}
-1 \\
1 & 1 & 0
\end{array}\right\} \\
& Y^{\prime \prime \prime}=\{003 \rightarrow \text { Yes graphic }
\end{aligned}
$$

(2) We note that all degrees ore even in S

Hence, a graph G realized from S has properties \rightarrow \{comnected, $\forall v \in V: d(o)=$ even $\}$

These properties characterize on Eulerian graph
$\rightarrow \exists$ a closed trail containing all edges in the graph

Hence, the exists two edge-disjoint paths from any u to any F Euler Tour
pains rom any 4 to any G Euler Tour within the graph

\rightarrow deleting any edge will only disconnect at most one such path
$\Rightarrow \forall e \in E: G-e$ has at least one u, v-path $\forall u, v \in V$, so no edge can be a cut edge \square

