(1) A "tree" is defined as:

* Connected
* acyclic
we know a maximally acyclic graph must be acyclic

A maximally acyclic graph con not be disconnected, as a new edge connecting two components is a cut edge, which can not be port of a cycle
\Rightarrow Hence, it must also be connected D
(2)

$$
\begin{aligned}
\tau(G) & =\tau(G-c)+\tau(G \cdot c) \\
\tau(\text { 皿合 }) & =\tau(G)+\tau(\sigma)
\end{aligned}
$$

$$
\begin{aligned}
& 5^{6}+\tau\left(c^{2}+\frac{0}{0}\right)+\tau(8-\infty) \\
& 5+3^{6}+3^{6}=11
\end{aligned}
$$

