
$|S|>|N(s)|$ so no X-saturating match via Hall. So max match of

$$
|M|=3=|x|-1 \text { is }
$$

maximum

$0(G-s)=3>(s)=1$
so no P.M. via
Tutty. So match

$$
|M|=4<\frac{|v(G)|}{2}
$$

is maximum
Note: can also use Hall
(2) We want to show that via the Gale-shapley Algorithm, no man x is ever rejected by all women.

Note: women will only reject when they hove multiple matches has at

Note 2: once a women has at least 1 match, they will always hove at least ane match
\rightarrow In order for x to be rejected n times, this implies that there must be at least one match for all n women to $(n-1)$ possible men, a x contradiction x
\Rightarrow so no mon con be rejected n times, or by all women

