(1)

(where's (d)?)

Closed ear decomposition:

$$
\begin{aligned}
& P_{0}=\{(f, i),(i, h),(h, e),(e, a), \\
& \quad(a, b),(b, c),(c, f)\} \\
& P_{1}=(e, i) \\
& P_{2}=(e, f) \\
& P_{3}=(5, a) \\
& P_{4}=(f, b) \\
& P_{5}=\{(f, j),(j, k),(k, g),(g, f)\} \\
& P_{6}=(j, g)
\end{aligned}
$$

Open ear de composition not possible) due to cut vertex f

This implies that for the above G :

$$
K^{\prime}(G) \geq 2 . K(G)=1
$$

$$
K^{\prime}(G) \geq 2, K(G)=1
$$

closed ear decamp. no open ear decamp, exists

$$
\text { but } G \text { is still }
$$ connected

(2) a) is useless for us (classic slota trick)
b) we know $\delta(G)$ bounds both $K(G)$ and $K^{\prime}(G)$ above
c) We proved that this is an equivalent statement to saying G is at least 2 -connected
d) We noted that this implies G is at least 2 -edge-connected

$$
\Rightarrow \underset{\substack{ \\k} \underset{k^{\prime}}{\downarrow}(G)=K^{\prime}(G)=2}{\substack{\downarrow \\ k^{\prime}}}
$$

(Note, we cam also say that G is 1-comnected and I-edgeconnected, but the above is sufficient)

Sufficient)

