We transform G into a flow network F
For any $x \in V(G) \rightarrow$ source $s \in U(F)$

$$
y \in V(G) \rightarrow \sin k t \in U(F)
$$

For all $e=(u, v) \in E(G) \rightarrow\{(u, v),(v, u)\} \in E(F)$ (undirected)
(directed)
For all $v \in V(G) \rightarrow\left\{v_{\text {m }}, v_{\text {out }}\right\} \in V(F),\left(v_{\text {m }}, v_{\text {out }}\right) \in E(F)$

$v_{\text {in }}$ gets all $N^{-}(v)$
vout gets all $N^{+}(v)$
($v, n, v_{\text {out }}$) get weight 1 all other edges get a weight of ∞

We then compute a max s, t-flow on F
\rightarrow This equivalently gives us some minimum cut
Note: only the unit (Univ, rout) edges will be port of the cut
\rightarrow This gives us an equivalent
\rightarrow This gives us an equivalent vertex cut on G

Note 2: We con follow a unit of flow from s to t on F
\rightarrow only a single unit of flow cam go into any Fin, and it must flow into vout
\rightarrow The above holds for any unit of flow along on s,t-path
\rightarrow Hence, these s, t-paths are internally disjoint on both G and F
$=>$ so we hove $\lambda(s, t)$ paths and $K(s, t)$ min cut/ max flow on F, where $\lambda(s, t)=K(s, t)$ equivalently
$\lambda(x, y)=K(x, y)$ an G
(2)

Max flow $=9=$ min cut
Alban $=\{$ Alb, Col, Lat, Lou, GI\}
Troy $=\{$ Men, Ken, Wat, Troy\} ~
Note: The above cut is not unique

