
Proof Technique Bag O’ Tricks

1. Structural Arguments

(a) Arguments that consider the way in which a graph or subgraph must be con-
figured in terms of the topological “structure” of vertices and edges

(b) Consider v of degree x that is configured in some way

(c) Consider some v and G′ = G− v

(d) These types are arguments generally form the basis for most of our proofs on
graphs

2. Extremal Arguments

(a) Extremal Principle: within a well-ordered set, there is some maximum/minimum
value within that set

(b) Consider maximum path P

(c) Consider v of maximum degree in G

3. Parity Arguments

(a) We can often use parity on the countable properties of graphs

(b) even + even = even; odd + odd = even; even + odd = odd

4. Weak Induction

(a) P (1), . . . , P (k), P (k + 1)

(b) Demonstrate our basis P (1) – and/or P (0) and/or P (2), etc.

(c) Assume what we’re trying to prove for our P (k) case via inductive hypothesis

(d) Construct our P (k + 1) case

(e) Show that what we’re trying to prove still holds on P (k + 1)

5. Strong Induction

(a) P (1), . . . , P (k), . . . , P (n)

(b) Demonstrate our basis

(c) Consider our P (n) case, where original assumptions hold

(d) Construct our P (k) case by removing some part of P (n) – P (k) construction
must still fit our original assumptions of P (n)

(e) Assume what we’re trying to prove for our P (k) case via inductive hypothesis

(f) Show that what we’re trying to prove still holds on P (n)

6. Construction Methods for Strong Induction
1

(a) There are many ways we can get from P (n) to P (k) in a strong inductive proof

(b) Edge Deletion: P (k) = P (n)− e : e ∈ E(P (n))

(c) Vertex Deletion: P (k) = P (n)− v : v ∈ V (P (n))

(d) Edge Contraction: P (k) = P (n) · e : e = (u, v) ∈ E(P (n))

(e) Subgraph Deletion: P (k) = P (n)− S : S ⊆ P (n)

7. Necessity and Sufficiency

(a) To prove an equivalence, prove necessity and sufficiency

(b) To show: A is equivalent to B

(c) First show: A implies B

(d) Then show: B implies A

8. Contrapositive

(a) “A implies B” is equivalent to saying “not B implies not A”

(b) “A is equivalent to B” is equivalent to saying “not A is equivalent to not B”

9. Proof by Contradiction

(a) Assume what we’re trying to prove doesn’t hold, then show that the conse-
quences of this assumption leads to a contradiction

(b) Assume we have a tree T with |E(T)| ≥ |V (T), we can show that such a T
will always have a cycle, hence we have a contradiction against our assumption
that T is a tree

10. Proof by Algorithm

(a) Construct an algorithm to demonstrate a property holds

(b) Here’s an algorithm that shows any graph with property A can be be processed
in a way that definitively shows it has property B

11. Proof by Counter-Example

(a) Demonstrating some property doesn’t hold via an explicit construction

(b) Here’s a counter-example that shows how A does not imply B

12. Consider the Cases

(a) For many of the above techniques, we may also need to consider multiple
possibilities as part of our proof

(b) Consider connected graph G, vertex v ∈ V (G), and G− v

(c) Case 1: G− v is still connected

(d) Case 2: G− v has exactly two components

(e) Case 3: G− v has three or more components
2

