
1.1 Real-world Graphs

A graph is a mathematic structure of discrete entities (vertices) and the interactions
between them (edges). Pretty much anything that exists can be described in the notation
of graphs. Or, as I like to say, everything is a graph.

“Real-world graphs” are graphs that arise in biology, technology, social science, etc. Com-
monly studied graphs include road networks, social networks, protein interaction networks,
the brain, the Internet, among many many others. Better understanding these real-world
graphs has been a strong driver of the field of graph theory. A number of these graphs
have several common and inter-related properties:

Sparsity: Most vertices are only connected to a small fraction of total vertices in the
graph.
Example: How many people are you friends with on Facebook (social relationship graph)
out of the 2+ billion that use it?
Degree skew: A large difference between maximum and minimum degree for all vertices.
A few vertices have a large degree while most vertices have a much smaller degree.
Example: How celebrities on Twitter (social follower graph) might have millions of fol-
lowers, whereas you or I might have hundreds.
Hubs: The large degree vertices serve as central hubs, connecting disparate parts of the
graph.
Example: Search engines or other link aggregators on the Internet (information graph).
Irregularity: There is not necessarily a fixed structure based on geometric limitations
or similar restrictions.
Example: Your friends on Facebook can be from any geographic location on the globe.
Small-world: Due to these hubs and irregularity, the vertices in the graph are all quickly
accessible from one another.
Example: How many clicks does it take for you to get from one Wikipedia page to any
other? Ever hear of “Six degrees of Kevin Bacon”?

However, a lot of the graphs that we’ll consider in this class don’t fully represent these
real-world properties. This is generally done for ease of proofs and understanding. But I
think it’s still useful to recognize the above for the occasional example of real-world data
that we’ll use.

1.2 Basic Definitions

Below are some basic (and more formalized) definitions and terminology that will be used
throughout the course. As mentioned, graphs and aspects of graph theory appears within
a wide variety of fields (computer science, math, network science, social sciences, physics,

1

biology, many more), and all of these fields tend to use different notation and terminology.
I’ll try and keep things as consistent as possible for all of our sake. Additional terms and
definitions will be introduced as we come across them.

A graph G is a tuple consisting of a set V (G) of elements called vertices, a set E(G) of
pair of vertices called edges, and the endpoint relations of edges that associate each edge
with two vertices. Additionally, each vertex and edge can have some non-zero number
of weights associated with it (remember minimum spanning trees?). We consider undi-
rected graphs for now, in which each edge is a non-directional pairwise relation.

If e = (v, u) is an edge in G, then
e joins u and v; e is incident with u and v;
u and v are incident with e;
u and v are endpoints of e;
u and v are adjacent to each other;
u and v are in each others’ neighborhood.

The degree of v is the number of u ⊆ V (G) that are adjacent to v.

The order of a graph G(V,E) is |V |; the size of G(V,E) is |E|. If both |V | and |E| are
finite, G is called finite. A graph of order p and size q is called a (p, q)-graph.

Multiple edges or multi-edges are edges which have the same pair of endpoints. Loops
are edges in which the endpoints are the same vertex.

A simple graph has no multiple edges or loops
A null graph is a graph with V = E = ∅
A trivial graph is a graph with E = ∅ and |V | = 1
An empty graph is a graph with E = ∅ and |V | ≥ 1

A path is a simple graph whose vertices can be listed such that any two vertices are
adjacent iff (if and only if) they are consecutive in the list. A cycle is a simple graph
with an equal number of vertices and edges whose vertices can be placed around a circle
and two vertices are adjacent iff they are appear consecutively along the circle. A tree is
a simple connected graph with no cycles.

A bipartite graph is a graph which is the union of two disjoint independent sets.
A complete graph, or clique, is a graph where any two vertices in the graph are adja-
cent. We denote a clique of size n by Kn.
A complete bipartite graph or biclique with independent sets of sizes n and m we
denote as Kn,m

2

A subgraph of a graph G is a graph H that is entirely contained in G (H ⊆ G), or
that V (H) ⊆ V (G) and E(H) ⊆ E(G) with all endpoint assignment being the same.

A bulk of this class will be diving deeper into proofs, algorithms, and interesting properties
for each of the above various graph types (and more!). Some of the terminology used we
haven’t explicitly defined yet, but we will in due time as necessary.

1.3 Graph Representation

There are multiple ways to represent a graph. Below are a few examples.

An adjacency matrix A(G) is an n × n (where n = |V |) matrix where a (positive)
nonzero value in each ai,j indicates that many edges with endpoints from vi to vj. The
sum of nonzeros in a row i is equal to the degree of vi. For a simple graph with no loops,
the diagonal will be zeros and the only nonzero appearing with be 1. For undirected
graphs, the adjacency matrix will be symmetric.

An incidence matrix M(G) is an n×m (where n = |V | and m = |E|) in which a value
of 1 in mi,j indicates that vi is incident on edge ej. Again the sum of nonzeros in a row i
is the degree of vi.

For memory efficiency with most real-world graphs, adjacency/incidence matrices are
rarely used in computation. Recall, most real-world graphs are extremely sparse. One
of the easiest graph representations commonly utilized is to simply store for each vertex
its degree and adjacencies (adjacency format). Another common representation is the
compressed sparse row (CSR) format. It uses two arrays: the first array L of length
2|E| lists in order adjacencies of v1 then v2 then . . . vn. The second array O of length
|V | + 1 lists offsets for each vi to where their adjacencies begin in the first array. The
degree for any vi can be calculated as O[i + 1]−O[i]. For iterative computations, a CSR
format can have a slight locality/cache benefit over the degree-adjacency representation.

3

