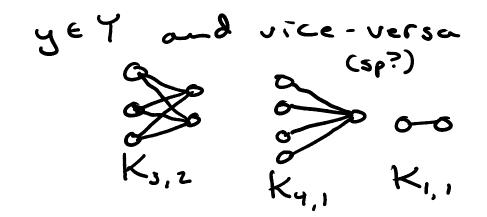
Fun Fact of the Day: In grad school, there was only a single class that Slota's advisor did not allow him to take. That class: graph theory

Bipartite graphs Graphy whose vertex set can be separated into two vertexdisjoint sets, s.t. between (such that) two vertices in one of these sets, there are no edges edges 6 ithm a set

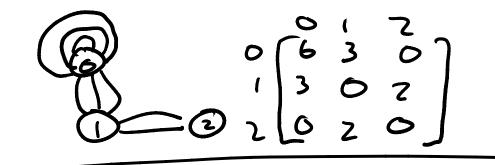
biclique a.b.a. complete bipartite graph a bipartite graph with sets X,Y with all XEX connecting to all yEY and vice-versa



Graph Representation -> adjacency natrix representation matrix A: an nxn matrix representing the structure of some graph G, where n= 1V(G)1 if edge (i,j) exists EE(G) - ai; EA is nonzero (assume vertices are labeled or sorted from 1...n) For undirected smple graphs: $a_{ij} \in \{0, 1\}$ zeros on the diagonal

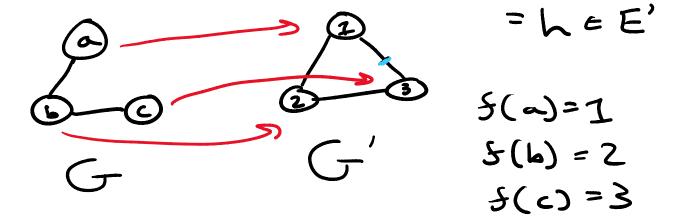
aij = aji
For multigrophs:

$$a_{ij} \ge 0 \rightarrow ualue is number
of (i.j) edges
For loopy graphs:
 $a_{ii} \in \{0, 2\} \rightarrow ualue of Z$
indicates self loop
on vertex i
For loopy multigraphs:
 $a_{ii} \ge 0 \rightarrow ualue$ is 2π the
 $a_{ij} \ge 0 \rightarrow ualue$ i$$



- Graph Properties and Classes
- Property: a description or characteristic Hat some graph holds consider K3: 000 Property: |V(K3)|=|E(K3)|=3 Property: K3 is cyclic (has cycles) Property: VrEV(K3): d(r)=2 alea K3 is 2-regular

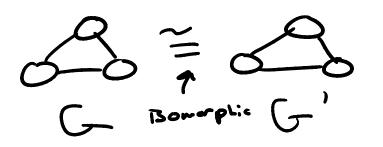
Graph class: a set of all possible graphs having the same set of properties



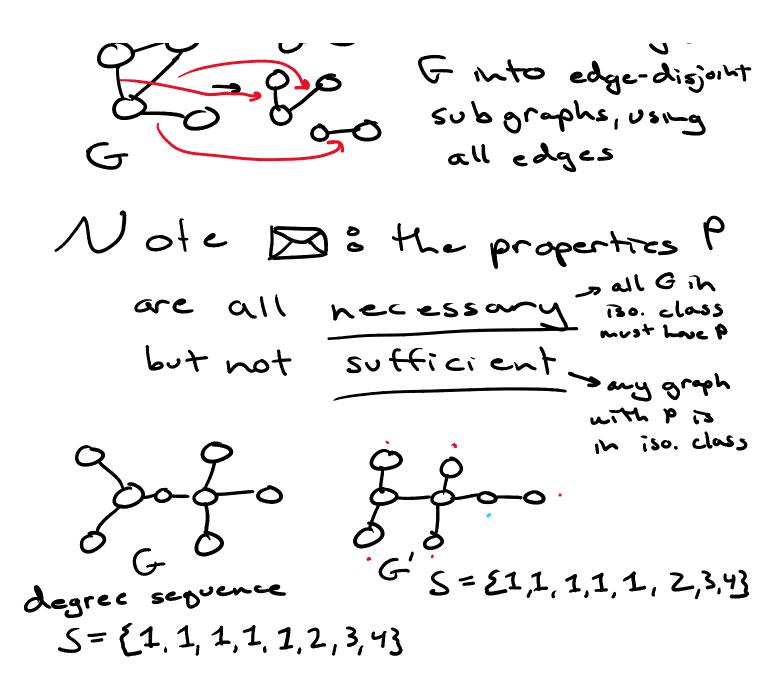
 $(a, b) \rightarrow (f(a), f(b))$ $(1, z) \in E'$ $(b, c) \rightarrow (f(b), f(c))$ $(z, 3) \in E'$

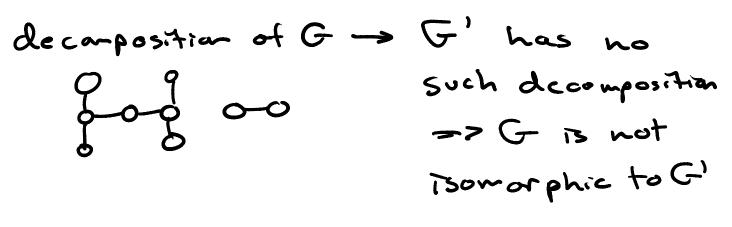
-> not isomorphic Recall for bijection:

> 1. Must have I-to-I mapping Z. Functional mapping f: V+V' must be invertible to some g: V'-3V



IF
$$F=F'$$
:
 $[V(F)] = [V(F')]$ list of all degrees
 $|E(F)] = |E(F')|$ for all $v \in V$
sorted degree sequence is
going to be equivalent
The diameters will be equal
align of the
longest shortest pith
The givths will be equal
Ashortest cycle
constituent subgraphs are
identical
 $V(H) \leq V(F)$
 $E(H) \leq E(F)$
Likewise, a decomposition
an G also exists an Gi
 Q Q Q F into edge-disjoint





In general: to show an isonorphic

In general 1- som ---relationship doesn't hold, are just needs to show some property differs between the two graphs To show an isomorphic relationship DOES hold - need to Find and validate that bijective function (> usually, much harder to do Subgraph isonorphism: determing whether some graph H is a subgraph of some graph G H G H is a non-induced subgraph of G Induced subgraph

G consider some vertex set of H and a mapped vertex set of G all edges among vertices in G exist among all vertices in H