
2.1 Graph Properties and Graph Classes

Most all problems we’ll consider in this course relate to graph properties and graph
classes. A graph property is simply a descriptive characteristic that some graph holds.
E.g., consider the properties below for clique graph K3:

• Property: K3 is non-empty (has at least one edge)

• Property: K3 is connected

• Property: |V (K3)| = |E(K3)| = 3

• Property: K3 contains a cycle of length three : C3 ⊆ K3

• Property: ∀v ∈ V (K3) : d(v) = 2

Conversely, a graph class is a collection of all possible graphs that all have some shared
property or properties. We already talked about several graph classes. One such example
would be the class of simple graphs, which contains all possible graphs that have the
properties of no multi-edges and no self loops. Other examples we’ve covered include
connected graphs, acyclic graphs, or clique graphs, among many others. As one
could infer, the cardinality of a given graph class could be infinite.

Most of the proofs in this course will relate to proving relationships between graph classes
and graph properties. E.g., prove that graph G with property P belongs to a more specific
graph class C. Similarly, we might want to prove that G with property P also must have
properties Q and R. Some of the time, what we might be trying to determine is whether
two graph classes fully intersect, partially intersect, have some subset/superset relation,
or are fully disjoint. We will discuss this in more detail when we start getting into proof
techniques.

2.2 Isomorphism

Two graphs: G = (V,E) and G′ = (V ′, E ′) are called isomorphic if there is a one-to-one
mapping f from V onto V ′ such that any two vertices vi, vj ∈ V are adjacent iff f(vi) and
f(vj) are adjacent. We would say that G is isomorphic to G′, or G ∼= G′. This mapping
is also referred to as an edge-preserving bijection from V to V ′. Generally, a bijection
between two arbitrary sets X,Y can be considered a functional mapping f : X → Y that
has the following properties:

1. One-to-one: ∀x ∈ X : ∃ exactly one f(x) = y ∈ Y
4

2. Invertible: ∀y ∈ Y : ∃ exactly one g(y) = x ∈ X, where g is the inverse function of
f

Isomorphism can also be extended to non-simple graphs, through adding the language
that there also must explicitly also exist a bijection from E to E ′, where every edge
vi, vj ∈ E(G) must map to an edge (f(vi), f(vj) ∈ E(G′)).

By permuting the rows of the adjacency matrix of G (A), we should be able to create
the adjacency matrix of G′ (A′); i.e., there exists a permutation matrix P such that
PAP T = A′.

If G(V,E) and G′(V ′, E ′) are isomorphic, then we can make general statements such as:

1. |V | = |V ′| and |E| = |E ′|

2. the degree sequences of G and G′ sorted in non-increasing order are identical

3. the lengths of the longest shortest paths (a graph’s diameter) in G and G′ are
equal

4. the lengths of the shortest cycles (a graph’s girth) in G and in G′ are equal

Note that properties (1) - (4) are necessary but not sufficient conditions for
isomorphism. We’ll discuss more about what this means soon.

The isomorphism relation on the set of ordered pairs from G to G′ is:
reflexive: G ∼= G
symmetric: if G ∼= H, then H ∼= G
transitive: if G ∼= H and H ∼= J , then G ∼= J

An isomorphism class is an equivalence class of graphs that are all under an isomorphic
relation.

An automorphism is an isomorphism from G to itself. The set of automorphisms of G is
known as G’s automorphism group. This can be loosely thought of the ways in which
a graph is symmetric. While the notion of isomorphism and automorphism appear quite
similar on the surface, an automorphic permutation of G will be equal to the original
graph (i.e., the edge list is preserved).

2.2.1 Subgraph Isomorphism

Sometimes we may talk about the subgraph isomorphism problem, which is: Given a
graph G and a graph H of equal or smaller size of G, does there exist a subgraph of G that

5

is isomorphic to H? Subgraph isomorphism and related problems (subgraph counting:
how many different subgraphs of G are isomorphic to H? subgraph enumeration: what
are those subgraphs of G that are isomorphic to H?) are common techniques of graph
mining.

We also want to differentiate between vertex-induced (or simply, induced) subgraphs
and non-induced subgraphs. For both, we consider a subgraph S of G that contains a
set of vertices V (S) ∈ V (G). We would say that the subgraph is induced if ∀(u, v) ∈ E(G)
s.t. u, v ∈ V (S) =⇒ (u, v) ∈ E(S). The subgraph is non-induced if it only contains
a subset of the edges (u, v) ∈ E(G) s.t. u, v ∈ V (S). In the future, we might ask if
some vertex subset V (S) ⊂ V (G) induces a subgraph with specific characteristics in G -
inducing the subgraph considers all existing edges among the vertices in V (S).

2.2.2 Computational Considerations

In terms of computational complexity, graph isomorphism is thought to be solvable in
quasi-polynomial time [exp((log n)O(1)), Babai 2015], though it remains an open problem.
Subgraph isomorphism is NP-complete. A naive algorithm for subgraph isomorphism
would involve exhaustively checking the local neighborhood of all v ∈ V (G) for an isomor-
phic relation to H, and requires O(nk) time, where n = |V (G)| and k = |V (H)|. Although,

several specialized algorithms exists; e.g., triangles can be enumerated in O(m
2ω
ω+1) time,

cycles can be found in O(nω log n) time, and trees can be found in polynomial time (ω
is the exponent of fast matrix multiplication – most recently, ω ≈ 2.373 by Alman and
Williams, 2021).

6

