2.1**Graph Properties and Graph Classes**

Most all problems we'll consider in this course relate to graph properties and graph **classes.** A graph property is simply a descriptive characteristic that *some graph* holds. E.g., consider the properties below for clique graph K_3 :

- Property: K_3 is non-empty (has at least one edge)
- Property: K_3 is connected
- Property: $|V(K_3)| = |E(K_3)| = 3$
- Property: K_3 contains a cycle of length three : $C_3 \subseteq K_3$
- Property: $\forall v \in V(K_3) : d(v) = 2$

Conversely, a graph class is a collection of *all possible* graphs that all have some shared property or properties. We already talked about several graph classes. One such example would be the class of **simple graphs**, which contains all possible graphs that have the properties of no multi-edges and no self loops. Other examples we've covered include connected graphs, acyclic graphs, or clique graphs, among many others. As one could infer, the cardinality of a given graph class could be infinite.

Most of the proofs in this course will relate to proving relationships between graph classes and graph properties. E.g., prove that graph G with property P belongs to a more specific graph class C. Similarly, we might want to prove that G with property P also must have properties Q and R. Some of the time, what we might be trying to determine is whether two graph classes fully intersect, partially intersect, have some subset/superset relation, or are fully disjoint. We will discuss this in more detail when we start getting into proof techniques.

2.2Isomorphism

Two graphs: G = (V, E) and G' = (V', E') are called **isomorphic** if there is a one-to-one mapping f from V onto V' such that any two vertices $v_i, v_j \in V$ are adjacent iff $f(v_i)$ and $f(v_i)$ are adjacent. We would say that G is isomorphic to G', or $G \cong G'$. This mapping is also referred to as an edge-preserving **bijection** from V to V'. Generally, a bijection between two arbitrary sets X, Y can be considered a functional mapping $f: X \to Y$ that has the following properties:

1. One-to-one: $\forall x \in X : \exists$ exactly one $f(x) = y \in Y$ 4

2. Invertible: $\forall y \in Y : \exists$ exactly one $g(y) = x \in X$, where g is the inverse function of f

Isomorphism can also be extended to non-simple graphs, through adding the language that there also must explicitly also exist a bijection from E to E', where every edge $v_i, v_j \in E(G)$ must map to an edge $(f(v_i), f(v_j) \in E(G'))$.

By permuting the rows of the adjacency matrix of G(A), we should be able to create the adjacency matrix of G'(A'); i.e., there exists a **permutation matrix** P such that $PAP^{T} = A'$.

If G(V, E) and G'(V', E') are isomorphic, then we can make general statements such as:

- 1. |V| = |V'| and |E| = |E'|
- 2. the **degree sequences** of G and G' sorted in non-increasing order are identical
- 3. the lengths of the longest shortest paths (a graph's **diameter**) in G and G' are equal
- 4. the lengths of the shortest cycles (a graph's girth) in G and in G' are equal

Note that properties (1) - (4) are necessary but not sufficient conditions for isomorphism. We'll discuss more about what this means soon.

The **isomorphism relation** on the set of ordered pairs from G to G' is: **reflexive**: $G \cong G$ **symmetric**: if $G \cong H$, then $H \cong G$ **transitive**: if $G \cong H$ and $H \cong J$, then $G \cong J$

An **isomorphism class** is an equivalence class of graphs that are all under an isomorphic relation.

An **automorphism** is an isomorphism from G to itself. The set of automorphisms of G is known as G's **automorphism group**. This can be loosely thought of the ways in which a graph is *symmetric*. While the notion of isomorphism and automorphism appear quite similar on the surface, an automorphic permutation of G will be **equal** to the original graph (i.e., the *edge list* is preserved).

2.2.1 Subgraph Isomorphism

Sometimes we may talk about the **subgraph isomorphism** problem, which is: Given a graph G and a graph H of equal or smaller size of G, does there exist a subgraph of G that

is isomorphic to H? Subgraph isomorphism and related problems (**subgraph counting**: how many different subgraphs of G are isomorphic to H? **subgraph enumeration**: what are those subgraphs of G that are isomorphic to H?) are common techniques of graph mining.

We also want to differentiate between **vertex-induced** (or simply, **induced**) subgraphs and **non-induced** subgraphs. For both, we consider a subgraph S of G that contains a set of vertices $V(S) \in V(G)$. We would say that the subgraph is induced if $\forall (u, v) \in E(G)$ s.t. $u, v \in V(S) \implies (u, v) \in E(S)$. The subgraph is non-induced if it only contains a subset of the edges $(u, v) \in E(G)$ s.t. $u, v \in V(S)$. In the future, we might ask if some vertex subset $V(S) \subset V(G)$ induces a subgraph with specific characteristics in Ginducing the subgraph considers all existing edges among the vertices in V(S).

2.2.2 Computational Considerations

In terms of computational complexity, graph isomorphism is thought to be solvable in quasi-polynomial time $[exp((\log n)^{O(1)}), \text{ Babai 2015}]$, though it remains an open problem. Subgraph isomorphism is NP-complete. A naive algorithm for subgraph isomorphism would involve exhaustively checking the local neighborhood of all $v \in V(G)$ for an isomorphic relation to H, and requires $O(n^k)$ time, where n = |V(G)| and k = |V(H)|. Although, several specialized algorithms exists; e.g., triangles can be enumerated in $O(m^{\frac{2\omega}{\omega+1}})$ time, cycles can be found in $O(n^{\omega} \log n)$ time, and trees can be found in polynomial time (ω is the exponent of fast matrix multiplication – most recently, $\omega \approx 2.373$ by Alman and Williams, 2021).