
4.1 Proof Techniques

Let’s go over in more detail some additional proof techniques. Recall our proof from last
class, where we used induction to prove that all odd walks contain an odd cycle.

Note that in the above proof we had to Consider the Cases of possible configurations of
the walk. Generally, we will need to do this for a good portion of the proofs, inductive or
not. Usually, we do this to determine broad structural subclasses within our given property
class. We can then make simpler proof arguments related to each of these subclasses. As
we saw, the above proof has two cases that we needed to explicitly consider:

• Case 1: Walk W has no repeated vertices.

• Case 2: Walk W has repeated vertices.

Some of the proofs we do will have many more cases and even sub-subcases that need
consideration. When approaching any proof, try to come up with all possible configura-
tions, lengths, sizes, etc. of the graph, subgraph, walk, etc. whose properties that you
are attempting to prove or disprove. Quickly figuring out which structural properties to
consider generally comes with practice.

Our next technique, Parity Arguments, utilizes the notion of parity to prove or disprove
some statement. Note how in the above proof we also made use of the additive properties
of integers such that:
odd + odd = even
even + even = even
odd + even = odd

This is called integer parity. In this class, we will use it in the form of parity arguments,
which utilize parity prove or disprove something on countable properties. We might use
it in tandem with induction or solely on its own, usually when considering edges, vertices,
or some other countable property of graphs.

Necessity and Sufficiency is used to prove equivalence relationships, such as we’ll
soon show that a graph is bipartite iff it has no odd cycle (note: iff → “if and only
if”). Proving equivalences basically means that were proving two graph classes defined
by differing properties actually contain the same set of possible graph configurations; i.e.,
the graph classes are equivalent.

To generally prove an equivalence relationship, we can show that the given properties or
conditions (A iff B) are both necessary and sufficient; i.e., by proving that if property
A implies property B and if property B implies property A, we prove their equivalence.
For any equivalence relationship, knowledge about one property class gives us knowledge
about the other property class – so if we know a graph has no odd cycles, we also know

11



that it therefore must be bipartite. As you’ll find in this class, a lot of equivalence proofs
on graphs tend to have one direction of the equivalence being quite easy to prove1

Prove with necessity and sufficiency: A graph is bipartite iff it contains no odd cycle.

Necessity: It is necessary for a bipartite graph to have no odd cycles.
Graph G is bipartite =⇒ G contains no odd cycles.

Sufficiency: A graph having no odd cycles is sufficient in demonstrating that the graph
is bipartite.
Graph G contains no odd cycles =⇒ graph G is bipartite.

4.2 Eulerian Circuits

Recall the Königsberg bridge problem we discussed in the first class. The problem essen-
tially reduces to whether or not its possible to begin at some vertex, traverse every edge
exactly once, and return to that starting vertex. In other words, a closed trail exists on
G that contains all e ∈ E(G).

A graph is Eulerian if such a trail exists. A closed trail is a circuit when there isn’t
any specific start/end vertex specified. An Eulerian circuit (or an Euler Tour) in
a graph is the circuit or trail containing all edges. An Eulerian path in a graph is a
path containing all edges, but isn’t closed, i.e., doesn’t start or end at the same vertex.
We’ll focus discussion on Eulerian circuits today. The following two proofs will let us
demonstrate a characterization of Eulerian graphs.

Prove: If every vertex in G has at least a degree of 2, then G has a cycle. For this proof,
we can construct an argument using the extremal principal. We’ll talk more about this
later.

Prove: A graph is Eulerian iff it has at most one nontrivial component and is an even
graph. An even graph contains vertices which all have an even degree.

How might we find an Eulerian circuit?

One approach is Fleury’s algorithm:

Note that you aren’t going to be required to know or use this algorithm. But think about
potential proofs to prove the correctness of the algorithm. How would you show whether
the algorithm returns a full tour for every valid input?

1The ol’ “easy one way but harder the other”, as Slota terms it.

12



T ← ∅ . Initialize Eulerian circuit
G′ ← G
Start at any vertex v
while G′ 6= ∅ do

Select at edge e to travel along, where (G′ − e) is not disconnected
T ← e
G′ ← (G′ − e)

return T

4.3 Extremal Problems

An extremal problem asks for the maximum or minimum value of a function over a
class of objects. Consider proofs for the below extremal problems related to degrees and
connectivity.

We’ll often use extremal arguments (commonly called the extremal principle) as another
proof technique through the course. The extremal principle states that within some set
of countable and orderable values, there exists some item(s) with a maximum value and
some item(s) with a minimum value.

Recall from the first proof we worked through today – “Let P be a maximal path in G”.
By selecting an item with the most extreme property, we can often use information infered
from that item as a starting point to understand the more general case.

We’ll consider many other minimal or maximal graphs, subgraphs, and other properties
as methods to solve various proofs.

13


