6.1 Trees

A tree is a connected undirected acyclic graph. A forest is an undirected acyclic graph. A leaf is a vertex of degree one. Every tree with at least two vertices has at least two leaves. A spanning subgraph of G is a subgraph that contains all vertices. A spanning tree is a spanning subgraph that is a tree. All graphs contain at least one spanning tree.

Necessary properties of a tree T :

1. T is (minimally) connected
2. T is (maximally) acyclic
3. T has $n-1$ edges
4. T has a single u, v-path $\forall u, v \in V(T)$
5. Any edge in T is a cut edge; any non-leaf vertex is a cut vertex
6. Adding any edge to a tree (without adding vertices) creates a cycle

Which of these properties are also sufficient?
Generally, because any possible tree can be constructed by iteratively adding vertices and edges to the simplest possible tree (single vertex/single edge), we can often use weak (instead of strong) induction in proofs on trees.

We can prove using weak induction that every tree is bipartite.
We can also prove using strong induction on the number edges m of a tree T : Between any two $u, v \in V(T)$, there exists only a single unique u, v-path. Note that the approach in this proof is nearly identical to what we would do with weak induction, as our construction is basically identical, but it uses edge deletion instead of edge addition.

Note: In prior classes (especially the CS students), you might have used structural induction in the context of proofs on trees. The difference with structural induction is that there does not need to be an explicit "countable" variable on which induction is performed, though the recursive idea behind the proof technique is similar to strong induction. We won't be covering structural induction in this course.

6.2 Distances

The distance between a u and v in G written as $d(u, v)$ is the length of the shortest u, v path. Remember that the diameter of a ${ }_{97}^{\operatorname{raph}}$ is $\max _{u, v \in V(G)} d(u, v)$, or the maximum
$d(u, v)$ among all possible u, v pairs. The eccentricity of a vertex $\epsilon(u)$ is $\max _{v \in V(G)} d(u, v)$, or maximum u, v path from that u. The radius of a graph is the minimum eccentricity of any vertex, or $\min _{v \in V(G)} d(u, v)$. The center of a graph is the subgraph induced by the vertices of minimum eccentricity.

