7.1 Tree Enumeration

Cayley's Formula states that with a vertex set of size n there are n^{n-2} possible trees. What this means is that there is n^{n-2} ways to form a list of length n-2 with entries created from a given vertex set. A list for a specific tree is its **Prüfer code**. For a given tree T with some logical ordering of vertex identifiers, we can create its **Prüfer code** by first deleting the lowest value leaf and outputting that leaf's neighbor as a value in our code. We can also use a given vertex set S and a **Prüfer code** to recreate T. See the proof in the book that for a set $S \in \mathbb{N}$ of size n, there are n^{n-2} trees with vertex set S.

Below are the algorithms for creating a **Prüfer code** from T and recreating T from a **Prüfer code**.

procedure CREATEPRUFER(Tree T with vertex set	S)
$a \leftarrow \emptyset$	▷ Initialize Prüfer code to null
for $i = 1 (n-2)$ do	
$l \leftarrow \text{least remaining leaf in } T$	
$T \leftarrow (T - l)$	
$a_i \leftarrow$ remaining neighbor of l in T	
return a	

procedure RECREATETREE(Prüfer code a c	created with vertex set S)
$V(T) \leftarrow S$	\triangleright Tree has vertex set S
$E(T) \leftarrow \emptyset$	\triangleright Initialize tree edges as empty
initialize all vertices in S as unmarked	
for $i = 1 (n-2)$ do	
$x \leftarrow \text{least unmarked vertex in } S \text{ not in}$	n $a_{i(n-2)}$
mark x in S	
$E(T) \leftarrow (x, a_i)$	
$x, y \leftarrow$ remaining unmarked vertices in S	
$E(T) \leftarrow (x, y)$	
$\mathbf{return} \ T$	

How many different ways can we create a graph given a vertex set of size n? Cayley's Formula states that with a vertex set of n there are n^{n-2} possible trees. A spanning subgraph of some graph G is a subgraph that contains all vertices in G. A spanning tree is a spanning subgraph that is also a tree. Another way to think about Cayley's Formula: the number of possible trees is the number of possible spanning tree configurations of complete graph. How might we compute the number of spanning trees of a general graph?

We can use a simple recurrence relation to do so. The number of possible spanning trees in a graph $\tau(G)$ is equal to the sum of the number of spanning trees of the graph with an edge removed $\tau(G - e)$ plus the the number of spanning trees of the graph with an edge contracted $\tau(G \cdot e)$. An **edge contraction** involves combining the endpoints u, v of a given edge e into a single vertex, such that the new vertex has incident edges of all original edges of both u and v except for e. We'll see more on recurrence relations in the future.

7.2 Graceful Labeling

A graceful labeling of a graph is a labeling of all n vertices of a graph with unique labels from 0...m, such that each of the m edges has a unique value computed as the difference between the labels of its endpoints. A graph is graceful if it has a graceful labeling.

Ringel-Kotzig Conjecture: all trees are graceful. This is unproven, however, certain subsets of of trees have been proven to be. These include paths and **caterpillar graphs**. Caterpillar graphs are trees in which a single path is incident to or contains every edge in the graph. Proving this conjecture will guarantee you an A in this course (though I get to be a co-author on the paper).