
8.1 Weighted Graphs

Until now, the graphs we’ve been considering are what we would term as unweighted.
Meaning, that there are no explicit weights assocaiated with the vertex or edge sets
defining the graph. For the algorithms below on an unweighted graph, we would implicitly
assume unit weights, or weights with a value of 1, on edges and/or vertices when necessary.

A weighted graph G = {V,E,W}, in constrast, has an additional set of weights W ,
which can be assigned to vertices W = {WV }, edges W = {WE}, or both W = {WV ,WE}.
It is also possible that each vertex/edge has multiple weights defined on it. Generally,
weights will be defined for all vertices and/or edges and the number of weights will also
be equal across the graph.

8.2 Minimum Spanning Trees

Given an undirected and connected graph that has some numeric weight assigned to each
edge, the minimum spanning tree problem seeks to create a spanning tree such that the
sum of the weights selected for the edges of the spanning tree is minimized. There are
two classic algorithms for this problem. They include Kruskal’s algorithm and Prim’s
algorithm.

procedure Kruskal(Graph G = {V (G), E(G),W (G)})
. Note: W (G) is a numeric weight for each edge in E(G)

V (T )← V (G) . Spanning tree T will have all vertices of G
E(T )← ∅ . Edge set of T initially null
sort W (G) and correspondingly E(G) by nondecreasing values in W (G)
for all w ∈ W (G), e ∈ E(G) do

if numComponents(T + e) < numComponents(T ) then
E(T )← E(T ) + e

if numComponents(T ) = 1 then
break

return T

Kruskal initializes a spanning forest T to include all vertices in the original graph G. A
minimum weight edge is added as long as it reduces the number of components in T . The
algorithm terminates once there is only a single component, i.e. T is now a spanning tree.
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We can prove correctness of Kruskal’s algorithm by showing three things:

1. The algorithm outputs a tree.

2. The output tree spans the entire vertex set.

3. The sum of weights is minimum over all possible spanning trees.

procedure Prim(Graph G = {V (G), E(G),W (G)})
. Note: W (G) is a numeric weight for each edge in E(G)

V (T )← ∅ . Spanning tree’s vertices initially null
E(T )← ∅ . Edge set of T initially null
V (T )← randomSelect(V (G)) . Randomly select one vertex from G
while V (T ) 6= V (G) do

e← min(W (u, v)) ∈ E(G) : u ∈ V (T ), v /∈ V (T )
. Minimum weight edge in G with only one vertex in T

E(T )← E(T ) + e
V (T )← V (T ) + v

return T

Prim’s algorithm initializes by randomly selecting a vertex in G and adding it to T .
Iteratively, the minimum-weight edge between a vertex in T and a vertex not yet in T is
added to T along with the associated vertex. The algorithm terminates when T has all
vertices in G. You can observe that both algorithms are rather similar in their general
approaches.

8.3 Shortest Paths

Again, given an undirected and connected graph that has some numeric non-negative
weight assigned to each edge, the shortest paths problem seeks to find the minimum
distance between a vertex u and all other vertices v ∈ V (G). Distance here is defined
as the sum of the weights along a u, v-path. A classic algorithm for computing these
distances is Dijkstra’s algorithm. Here, we’re assuming the weights are non-negative.
Modifications to the algorithm is necessary in the more general case.

The algorithm initializes all distances D(v ∈ V (G)) to infinity except for the root vertex u,
which has distance zero. The algorithm tracks an unvisited set of vertices, where on each
iteration a vertex w with the minimum distance from u is selected. All edges adjacent to
this vertex are examined, and if a distance from w to a neighbor x plus the distance from
u to w is less than what is currently stored in the distance array for u to x, the distance
array is updated for x. After examining all neighbors, w removed from the unvisited set.
The algorithm terminates once the unvisited set is empty.
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procedure Dijkstra(Graph G = {V (G), E(G),W (G)}, vertex u)
. Finding all distances from u

for all v ∈ V (G) do
D(v)←∞ . Distances from u initially infinity

D(u)← 0
S ← V (G) . Unvisited set
while S 6= ∅ do

w ← min(D(v), v ∈ S)
. Current vertex considered has minimum distance in unvisited set

for all x ∈ N(w), x ∈ S do
t← W (w, x) . Weight of edge between w and x
if D(w) + t < D(x) then

D(x)← D(w) + t

S ← S − w . Remove w from unvisited set

return D

We can also prove correctness of Djikstra’s algorithm using weak induction on the cardi-
nality of the visited set of vertices.
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