
9.1 PageRank

“A modern classic.” – Professor Gittens

We’re going to talk a bit about the PageRank algorithm. This algorithm serves as a good
example of various ways in which to consider computations on graphs. It also has many
varied applications, and it gives us a shallow dive into a more “modern” subfield of graph
theory via Spectral Graph Theory. The major application of PageRank is to compute
some metric of centrality (i.e., importance) for all vertices in a directed graph.

9.1.1 Random Walk Model

A random walk on a graph is a walk that starts at some v and randomly selects some
u ∈ N(v) to hop to from v. Then, some w ∈ N(u) is selected and subsequently hopped
to. This process iterates for some number of steps. Random walks are a surprisingly
powerful tool, and they form the basis for a number of approximation and sampling-
based algorithms; doing multiple random walks on a small portion of a large graph is a
good way to measure some properties that might be extrapolated to the full graph.

In the first PageRank model, we’re considering our graph to be a series of web pages
connected through directed hyperlinks. We have a hypothetical surfer who randomly
clicks on links while browsing, and they hypothetically browse the web for an infinite
time.

The PageRank of a webpage is defined as the probability that this surfer will be viewing
that given page at any point in time. We can therefore calculate an estimate for the
PageRank of a page simply by performing a ‘sufficiently long’ random walk and tracking
how often the page is visited versus the total number of page visits.

Issues arise for any page that doesn’t have any outgoing links (out degree is zero, called
a sink) or incoming links (called a source), or if the graph D isn’t strongly connected
(∃u, v − paths∀u, v ∈ V (D)). To address these issues, we include some additional con-
siderations. Whenever a random surfer reaches a sink, they randomly jump to any other
page in the graph. It’s common to additionally consider that this surfer will randomly
jump with some probability after every link they traverse; this can improve convergence
and stability when calculating PageRanks, particularly when the graph isn’t strongly con-
nected. The probability that a surfer clicks a link versus randomly jumping is termed as
the damping factor. For now, we’ll just consider the basic model without the damping
factor component.
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for all v ∈ V (G) do
P (v)← 1

n
. Initialize PR equally among vertices

if |N+(v)| = 0 then
sink← sink + P (v) . Total PR of all sinks

for some number of iterations do
sinkn ← 0 . Sink contribution on next iteration
for all v ∈ V (G) do

P (v)← sink
n

. First get an equal portion from the sinks
for all u ∈ N−(v) do

P (v)← P (v) + P (u)
|N+(u)| . All u in N−(v) shares P (u) with N+(u)

if |N+(v)| = 0 then
sinkn ← sinkn + P (v) . Sink contribution for next iteration

swap(sink, sinkn)

9.1.2 Graph Algorithm Model

Graph algorithmic computations can be typified as performing some kind of per-vertex
or per-edge iterative update computation on some per-vertex or per-edge state. From
the perspective of each vertex during a PageRank computation, we have some initial
PageRank value that gets updated through multiple iterations. Going back to the random
surfer model, a surfer arrived on that vertex/page either from an in-edge or it was the
destination of a random jump. As the surfer travels, we can consider that it takes with
it a portion of the prior vertex’s PageRank. So for a given vertex, the PageRank is the
sum of PageRanks incoming through in-edges plus the PageRanks from potential random
jumps and from zero out-degree vertices.

The algorithm above gives how we would calculate PageRank using this model.

9.1.3 Linear Algebraic Model

We can also use the adjacency matrix of the graph to formulate this problem from an al-
gebraic perspective. As the transitions of our random surfer through the graph essentially
form a Markov chain, we can create a stochastic matrix M of transition probabilities from
a given vertex to its neighbors. We define M as:

M = (D−1A)T

where D is a diagonal matrix of out degrees and A is the adjacency matrix. We can use a
modified adjacency matrix where each vertex with zero out-degree is changed to have an
out-degree of n−1 and links to all other vertices in the graph, in order to mirror our prior
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models. We can then compute updated PageRanks in vector pi+1 as the matrix-vector
product of the current PageRank values pi and the transition probability matrix.

pi+1 = Mpi

with steady state solution

p∞ = Mp∞

This should look familiar if you’ve taken a linear algebra class1. Recall that an eigenvector
v for some matrix A is defined as

Av = λv

where λ is a corresponding eigenvalue. So, our PageRank steady state solution is actually
just an eigenvector of the transition probability matrix with eigenvalue of 1. There’s an
entire subfield of graph theory devoted to studying the eigenvectors and eigenvalues on
matrices derived from graph adjacency matrices. This is called Spectral Graph Theory.
In this class, this lecture is the deepest we’ll go into that field, however.

1If you have not taken a linear algebra class, you should, immediately. Linear algebra forms the basis
for most subfields of CS. Also recall that “everything is a graph” and all graphs are matrices, so literally
everything is also linear algebra.
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