10.1 Matching

A matching M in a graph G is a set of non-loop edges with no shared endpoints. l.e.,
Vv € V(G), v shows up at most as one endpoint for some edge e € M. Vertices incident
to some e € M are saturated; vertices not incident to some e € M are unsaturated. A
perfect matching is a matching that saturates all v € V(G). A maximal matching
is a matching that cannot be extended with the addition of an edge. A maximum
matching is a matching that is the maximum size over all possible matchings on G.

Given a matching M on G, an M-alternating path is a path that alternates between
edges from G in M and edges not in M. An M-alternating path whose endpoint vertices
are both unsaturated by M is an M-augmenting path. Berge’s Theorem states that
a matching M of GG is a maximum matching if and only if G has no M-augmenting path.
Observe how to we can swap the matched«>unmatched edges on an M-augmenting path
to increase the size of a match.

The symmetric difference between two graphs G and H, written as GAH, is the
subgraph of G U H whose edges are the edges that appear in only one of G and H (i.e.,
‘exclusive or’). The symmetric difference between two matchings contains either paths or
cycles. We can use this idea of symmetric difference to prove Berge’s Theorem.

Hall’s Theorem states that an X, Y-bipartite graph G has a matching that saturates
X if and only if |[N(S)| > |S| for all possible S C X. Hall’s Condition implies VS C
X,|N(S)| > |S| for X to be saturated. We can therefore show that a bipartite graph has
no matching saturating X if we identify a subset S C X where |N(5)| < |S]|.

We can use Hall’'s theorem to show that all k-regular bipartite graphs have a perfect
matching.

10.2 Maximum Bipartite Matching

In unweighted bipartite graphs, we can iteratively increase the size of an initial matching
M by finding augmenting paths. If an augmenting path can’t be found, we know via
Berge’s Theorem that we have a maximum match. The Augmenting Path Algo-
rithm is below. For unweighted shortest paths, we can simply use breadth-first search
(BFS).

As the algorithm demonstrates, we orient the edges of Gxy such that matched edges
are directed from some x € X to some y € Y and unmatched edges are directed in the
opposite way. We then add a vertex s that has a directed edge to all unsaturated vertices
in X and a vertex t that has edges from all unsaturated vertices in Y. A directed BFS
from root s will then follow M-alternating paths on G. If the BFS is able to reach ¢, that
implies that there is an M-augmenting pat}é 7from some vertex in X to some vertex in Y.

procedure MATCHBIPARTITE(X, Y-bigraph G)

M+ 0 > M initially empty
do
P + AugPathAlg(G, M) > New augmented path found with M, G
M < MAP > Symmetric difference between M, P
while P # ()
return M

On this path, we can swap matched<>unmatched edges to increase the size of the match
on G.

procedure AUGPATHALG(X, Y-bigraph G and matching M = (V)y, Ey))
G+ G
Orient G’ : Ve € Ey @ e(x;,y;) = e(y; — ;);Ve & En :e(x;,y;) = e(x; — ;)
Add vertex s to G’ with edges Va; € X, z; & Vi : (s = x;)
Add vertex t to G' with edges Vy; € Y,y; ¢ V= (y; — 1)
P + ShortestPathBFS(G', s, t) > Use BFS to find shortest path from s to ¢
return P — {e(s, z;),e(y;,t)} > Return path without added edges

As we’ll see next class, things get a little trickier when we allow odd cycles, as in general
graphs. We would need to modify our algorithm to account for them, though the main
idea of searching for augmenting paths is the same.

10.3 Mo’ Matching

There are several other variations of the matching problem. Generally, matching is con-
sidered an optimization problem, where we attempt to match as many edges in a graph
as possible. We refer to this problem as maximum cardinality matching. As with our
spanning tree and shortest paths problems, we can also consider edge-weighted graphs.
The maximum weight matching problem seeks to maximize the sum of the edge
weights in the matched set.

Another matching problem variant is the stable matching problem. Instead of attempt-
ing to optimize for weights, stable matching optimizes matches between two bipartite sets,
where each member of each set has an ordered preference for potential matches to the
opposite set. In this problem, an unstable pair is a pair of vertices x,a that are not
currently matched, but both vertices have a higher preference for match (z,a) over their
current match partner. A stable match is a match between the two bipartite sets where
there exists no possible stable pair.

The Gale-Shapley Proposal Algorithm is a greedy algorithm that solves for a stable
match given two ‘bipartite’ sets and list o%greferences of matches for all vertices. The

algorithm is generally given in the context of the stable marriage problem, which is a
synonymous term for the stable matching problem. The problem is described as there
being a set of n men and n women, where the men have ordered preferences for each
woman and the women have ordered preferences for each man. The algorithm iteratively
has men propose and women reject all but one proposal, with a final output having no
unstable pairs. The algorithm is given below.

procedure GALESHAPLEY(n men and n women and preference lists for each)
while not done do
Each man proposes to their highest preference woman
who has not yet rejected them
if each woman gets exactly 1 proposal then
return these proposals as a stable match
else
Women with 2 or more proposals reject all proposals
except their highest preference

29

