14.1 Digraph Connectivity

We can extend the concepts and terminology of connectivity to directed graphs as well. A vertex cut or separating set in a digraph D is a set $S \subseteq V(G)$ such that $D-S$ is not strongly connected. The connectivity $\kappa(D)$ is the minimum size of vertex set S such that $D-S$ is not strongly connected or is a single vertex. If $k \leq \kappa(D)$, then D is k-connected. A digraph is k-edge-connected if every edge cut has at least k edges, where an edge cut separates $V(D)$ into two sets S, \bar{S} such that the size of the edge cut is the number of directed edges (u, v) from $v \in S$ to $u \in \bar{S}$. The edge-connectivity $\kappa^{\prime}(D)$ is the minimum size of an edge cut. If $k \leq \kappa^{\prime}(D)$, then D is k-edge-connected.

As we have noted, 2-edge-connected graphs share similarities with strongly connected digraphs. We can show that adding a directed ear to a strong digraph produces a larger strongly connected digraph.

$14.2 k$-Connected Graphs

We can now further extend a few of the concepts we discussed with restriction to 2 connected and 2-edge-connected to k-connected and k-edge-connected graphs. Given two vertices $x, y \in V(G)$, a set $S \subseteq V(G)-\{x, y\}$ is an x, y-separator if $G-S$ has no x, y-path. We define $\kappa(x, y)$ as the minimum cardinality over all possible x, y-separators and $\lambda(x, y)$ as the maximum cardinality over all possible sets of internally disjoint x, y paths. Since any x, y-separator must contain an internal vertex of every internally disjoint x, y-path, we have $\kappa(x, y) \geq \lambda(x, y)$.

What follows is a generalization of Whitney's Theorem. Menger's Theorem states that for two vertices $x, y \in V(G)$ and $(x, y) \notin E(G)$ the minimum size of an x, y separator equals the maximum number of pairwise internally disjoint x, y-paths; i.e, $\kappa(x, y)=\lambda(x, y)$. A graph is therefore k-connected if for all $x, y \in V(G), \lambda(x, y) \geq k$.

We have similar concepts and terminology for k-edge-connectivity. Given two vertices $x, y \in V(G)$, a set $F \subseteq E(G)$ is an x, y-disconnecting set if $G-F$ has no x, y path. We define $\kappa^{\prime}(x, y)$ as the minimum cardinality over all possible x, y-disconnecting sets and $\lambda^{\prime}(x, y)$ as the maximum cardinality over all possible sets of edge disjoint x, y paths. A graph is k-edge-connected if for all $x, y \in V(G), \lambda^{\prime}(x, y) \geq k$. Likewise, $\kappa^{\prime}(x, y)=\lambda^{\prime}(x, y)$.

