
15.1 Network Flow

Consider a directed edge-weighted graph G where each edge e ∈ E(G) has a weight
designated as a capacity c(e). We also have a designated source vertex s and sink
vertex t. Such a graph is called a flow network.

A flow f(e) on a flow network G assigns a value to each e ∈ E(G). For each v ∈ V (G) we
have f−(v) as the sum of flows from incoming edges on v and f+(v) as the sum of flows
on outgoing edges. For non-source and non-sink vertices, a flow is feasible if is satisfies
constraints:

1. ∀e ∈ E(G) : 0 ≤ f(e) ≤ c(e)

2. ∀v ∈ V (G), v 6= s, t : f+(v) = f−(v).

The value val(f) of a flow f is the net flow into the sink, f−(t) − f+(t). A maximum
flow is a feasible flow where val(f) is maximum.

When f is a feasible flow in a network, a f -augmenting path is a source-to-sink path
P where for each e ∈ P :

1. if P follows e in a forward direction, then f(e) < c(e)

2. if P follows e in a backward direction, then f(e) > 0

Define ε(e) = c(e)− f(e) when e is forward on P and ε(e) = f(e) when e is backward on
P . The tolerance of P is mine∈E(P )ε(e).

If P is an f -augmenting path with tolerance z, then changing flow by +z on forward edges
in P and −z on backward edges in P produces a new feasible flow val(f ′) = val(f) + z.

In a flow network, a source-sink cut [S, T ] consists of the edges between a source set
S and sink set T , where S and T partition the nodes and s ∈ S, t ∈ T . The capacity
of the cut [S, T ], cap(S, T ) is the total capacities of the edges of [S, T ], with the net flow
from S to T equal to val(f) and val(f) ≤ cap(S, T ). Among all possible [S, T ] cuts, the
one with the lowest cap(S, T ) gives us a bound on our maximum flow. The Max-flow
Min-cut Theorem states the duality between the maximum flow and minimum cut
problems; specifically, the maximum value of a feasible flow equals the minimum capacity
of a source-sink cut.

35



procedure Edmonds-Karp(Flow Network G(V,E+, E−C, s, t))
. C = edge capacities, s = source vertex, t = sink vertex

for all e ∈ E(G) do
F (e)← 0 . Initialize flows to zero

do . Do iterative BFS searches for f -augmenting paths
for all v ∈ V (G) do

parent(v)← −1

Q← s,Qn ← ∅
while Q 6= ∅ do

for all v ∈ Q do
for all u ∈ N+(v) ∪N−(v) : parent(u) = −1 do

e← (v, u)
if

(
F (e) < C(e) and u ∈ N+(v)

)
or

(
F (e) > 0 and u ∈ N−(v)

)
then

parent(u) = v, Qn ← u

swap(Q,Qn), Qn ← ∅
if parent(t) = −1 then . Did we find path to sink?

foundpath← false
else

foundpath← true, tol←∞, v ← t
while v 6= s do . First determine tolerance tol

u← parent(v), e← (u, v)
if e ∈ E+(G) then

tol← min(tol, C(e)− F (e))
else

tol← min(tol, F (e))

v ← t
while v 6= s do . Now use tolerance to update flows

u← parent(v), e← (u, v)
if e ∈ E+(G) then

F (e)← F (e) + tol
else

F (e)← F (e)− tol

while foundPath = true
return (F−(t)− F+(t))

15.2 Max Flow – Edmonds-Karp Algorithm

The general iterative algorithm for identifying f -augmenting paths to incrementally in-
crease the flow in a network is called the Ford-Fulkerson Algorithm. When we use
BFS to find the shortest augmenting path, we have the Edmonds-Karp Algorithm,
defined above. Should we wish to find a min cut instead, we can use the set of vertices
visited by our BFS before termination as our S source set, unvisited vertices as the T
sink set, with the edges between them [S, T ] as our minimum cut.

36


